PROPOSED BEAM STABILITY SUBMITTAL REQUIREMENTS
March 3, 2017

Virginia J. Epperly, PE
Complex Structures Engineer
Structure & Bridge Division

Andrew M. Zickler, PE
ABC Support & Complex Str. Program Manager
Structure & Bridge Division

complexbridgehelp@vdot.virginia.gov
OVERVIEW

• PURPOSE & NEED
• RESPONSIBILITIES
• DESIGN
• STABILITY CLASSIFICATIONS
• CONTRACTOR SUBMITTALS
• DETAILS
• REFERENCES
• QUESTIONS
PURPOSE & NEED

• NEW CHALLENGES
 • Design
PURPOSE & NEED

• NEW CHALLENGES
 • Fabrication
PURPOSE & NEED

• NEW CHALLENGES
 • Transportation
PURPOSE & NEED

• NEW CHALLENGES
 • *Lifting*
PURPOSE & NEED

• NEW CHALLENGES
 • Site
 • Storage Conditions
 • Erection
 • Wind
 • Sweep Effects
PURPOSE & NEED
“Lateral stability must be considered for all stages in the life of a prestressed girder, including lifting, storage, transport, erection, support of construction loads during casting of the bridge deck, and in the future during deck removal and replacement.”

- PCI
“For the purposes of this specification, erection is the process of transporting, handling and assembling the bridge components to result in a bridge structure that meets all the geometric and structural requirements of the Contract Documents.”

- KANSAS DOT SPECIFICATIONS
“For the purposes of this specification, **erection operations** is a process including the transportation, handling and assembling the bridge components that meet all of the geometric and structural requirements of the Contract Documents.”

- VDOT SPECIAL PROVISION
RESPONSIBILITIES

• DESIGNER
 • Consideration of:
 o Reasonable Means & Methods:
 • Lifting
 • Erection
 o Potential Route Restrictions
 o Potential Site Restrictions

• PROVIDE:
 • Constructable Design
 • Details required for bid
RESPONSIBILITIES

• CONTRACTOR
 • Means & Methods
 o Where conditions/dimensions differ, engineering calcs req’d
 • Maintain Stability During Erection Operations:
 o Fabrication
 o Yard Handling
 o Storage
 o Transportation
 o Lifting
 o Erection
 o Prior to deck concrete reaching required strength
“If plans do not indicate lifting and support points, the Contractor shall lift and support units at locations not less than 6 inches or more than the depth of the unit from the end of the unit. . . . Requests by the Contractor to use lifting or support points other than those indicated must be accompanied by computations showing that stresses are within allowable range using 50% of the dead load as an impact factor.”

- VDOT SECTION 405.05(5)
WHAT EXACTLY DOES THIS MEAN?
• DESIGNER

• Lifting/Support Analysis
 o “Implied Responsibility”
 o Designer: Checks supports within zone defined in specs
 o Contractor: Checks supports not within zone defined in specs
DESIGN SUBMITTALS

• DESIGNER
 • Lifting Analysis
 o “Implied Responsibility”
 o **Designer**: Check supports within zone defined in specs
 o **Contractor**: Check supports not within zone defined in specs
• DESIGN SUBMITTALS

 • DESIGNER:
 • Lifting Analysis
 o "Implied Responsibility"
 o Designer: Check supports within zone defined in specs
 o Contractor: Check supports not within zone defined in specs
DESIGN SUBMITTALS

- Lifting Analysis
 - "Implied Responsibility"
- Designer: Check supports within zone defined in specs
- Contractor: Check supports not within zone defined in specs
STABILITY CLASSIFICATIONS

• STABILITY CLASSIFICATIONS
 • Stability Class SA
 • Stability Class SB

• REQUIRED SUBMITTALS
 • Determined by stability classification

• APPLICATIONS
 • Prestressed concrete
 • Post-tensioned concrete
 • CIP concrete
 • Structural steel
STABILITY CLASSIFICATIONS

Stability Class SA

Geometry:
- Longest span length is 130’ or less
- Concrete Only: \[
 \frac{b}{L} > 0.03 \quad \text{and} \quad \frac{w}{H} > 0.32
\]
- Girder radius of curvature is greater than 20 times the span length (angle < 0.05 radians)
- Span to depth ratio for beam only meets AASHTO rec’d minimums
- Skew angle < 30°

General:
- Does not cross highway or railroad traffic
- No multi-crane lifts or erection from floating equipment
STABILITY CLASSIFICATIONS

Stability Class SA (cont’d)

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movable cranes do not travel during lift</td>
</tr>
<tr>
<td>Shoring towers, falsework and strong backs not required during erection</td>
</tr>
</tbody>
</table>

Beam end conditions:

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular elastomeric bearing pads normal to the beam axis</td>
</tr>
<tr>
<td>Elastomeric Bearing width > 22”</td>
</tr>
<tr>
<td>Beam ends externally braced or connected by secondary member</td>
</tr>
</tbody>
</table>

Class SA-1: 75’ < Span Length ≤ 130’

Class SA-2: Span Length ≤ 75’
STABILITY CLASSIFICATIONS

• STABILITY CLASS SB INCLUDES:
 • All other bridges
 • Some Stability Class SA bridges:
 o With unique construction conditions
 o With unusual or complex site conditions
 o Based upon engineering judgement
CONTRACTOR SUBMITTALS

• TRANSPORTATION & SHIPPING PLAN
 • Required for all stability classifications

• ERECTION PLAN & PROCEDURES
 • Fully-integrated documents
 • Procedures address any items not addressed in the Erection Plan
 • Work Area Plan
 • All classifications
 o There are risk related distinctions separating level
CONTRACTOR SUBMITTALS

• SAFETY PLAN
 • *Class SA-1 & SB*

• ERECTION ENGINEERING CALCULATIONS
 • *Class SA-1 & SA-2*
 o NOT REQUIRED FOR CONCRETE
 • *Class SB*
 o *Cranes and Temporary Support Structures:*
 o *Operations*

• SUPPORTING DOCUMENTATION
• TIE-DOWNS
 • *Through web*
 o Planned (shop drawings)
 o RFI request
• TIE-DOWNS
 • *Through web*
 • *Over flange*
 - *Used often, sometimes inappropriately*
 - *Chains damage flange*
 - *Loose chains \rightarrow girder may rotate under the chains*
 - *Chains too tight \rightarrow crack and spall top flange*
• **LIFTING**

 • *w/o Spreader Beam*

 o Use of slings induces additional loading in beam
 o Additional lifting analysis required
 o Longer girders generally require spreader bars/beam
• **LIFTING**

 • *w/o Spreader Beam*
 - Use of slings induces additional loading in beam
 - Additional lifting analysis required
 - Longer girders generally require spreader bars/beam
DETAILS

• LIFTING
 • w/o Spreader Beam
 • w/ Spreader Beam
 ○ Increased stability
 ○ Decreased loads to beam due to hoisting
 ○ Distribute lifting loads across multiple points
• **LIFTING**
 - w/o Spreader Beam
 - w/ Spreader Beam
 - Through top flange
 - Lifting load applied through axis of member
 - No eccentricity
 - Increased stability
 - Resistance to twist at lift points
 - Detail coordinated between Fabricator, Contractor and Transporter
DETAILS

- **BRACING**
 - Various types
 - Provide calculations
 DETAILS

• **BRACING**
 • *Various types*
 • *Provide calculations*
DETAILS

• BRACING
 • Various types
 • Provide calculations
• **BRACING**

• **STORAGE**
 - *Duration of storage*
 - *Storage orientation*
 - *Dunnage*
 - Appropriate
 - Level ground

• **SITE ACCESS**
DETAILS

• BRACING
• STORAGE
• SITE ACCESS
REFERENCES

• National Highway Institute (NHI)
 • NHI Course No. 130102(A)
 • Engineering for Structural Stability in Bridge Construction

• Prestressed/Precast Concrete Institute (PCI)
 • Recommended Practice for Lateral Stability of Precast, Prestressed Concrete Bridge Girders, 1st Ed.

• AASHTO
 • Guide Specifications for Wind Loads on Bridges During Construction, 2017