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SUMMARY 

There is a significant need to improve the explicit consideration of highway safety in 

making decisions on roadway planning, design, and operations. To receive appropriate 

consideration, safety needs to be dealt with quantitatively within the transportation planning and 

highway design processes. The lack of available tools is a deterrent to quantifying the safety of a 

transportation facility during the planning or highway design process. Recognizing this problem, 

a group of Transportation Research Board (TRB) committees has identified the need for more 

explicit and quantitative consideration of safety within the above-mentioned processes. This 

important need eventually led to the development of the forthcoming Highway Safety Manual 

(HSM). The Manual will serve as a tool to help practitioners make planning, design, and 

operations decisions based on safety. It will serve the same role for safety analysis that the 

Highway Capacity Manual (HCM) serves for traffic-operations analyses. The product of this 

research will provide the necessary tools for estimating the safety performance of multilane rural 

highways and will be incorporated into Chapter 9 of the HSM (note: At the time this report was 

prepared, Chapter 11 had been tentatively designated as the chapter covering multilane rural 

highways; to be consistent with previous work on this project, the research team will keep 

referring to Chapter 9 for the methodology to estimate the safety performance of multilane rural 

highways). 

 The objective of this research is to develop a methodology that predicts the safety 

performance of various elements considered in the planning, design, and operation of non-

limited-access rural multilane highways.  
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The literature review illustrated that the safety performance of multilane rural highways 

was seldom investigated, both for segments and intersections located on these facilities. Despite 

the limited availability of studies on this topic, previous research has found that multilane rural 

highway segments experience, on average, less crashes than two-lane rural highways for the 

same level of exposure. For intersections, only one study specifically focused on estimating the 

safety performance for these types of facilities. In short, the review indicated that there is a need 

to develop models and a methodology for estimating the safety performance of multilane rural 

highways.  

 To accomplish the study objective, the research team divided the work into several tasks. 

The first task consisted of conducting a limited survey of state transportation agencies.  The 

objectives of this survey were to: a) determine whether the selected DOTs are currently using or 

developing statistical models to predict the safety performance of multilane rural highways; b) 

find out candidate input variables of interest to the survey participants; c) determine the 

availability of, and accessibility to, various databases, such as crash data, geometric design 

information for segments and intersections, traffic flows for segments, major and minor 

approaches. 

 The survey results showed that only two state agencies currently have a methodology for 

estimating the safety performance of multilane rural highways. The results also showed that 

crash data and segment files could be made available by all study participants. However, other 

databases, such as intersection databases, or access to georeferenced data, were not always 

available.  

The second task consisted of collecting data using five state databases: California, 

Minnesota, New York, Texas, and Washington. The data were used for developing statistical 
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models and AMFs for intersections and segments, as well as for a cross-validation study to 

evaluate the recalibration procedure for jurisdictions other than those for which the models were 

estimated. The data collected in Texas, California, Minnesota, and Washington were utilized for 

developing the models and AMFs. The New York data were used for the cross-validation. The 

data included detailed information about geometric design characteristics, traffic flow, and motor 

vehicle crashes. 

 In the third task, the research team developed the proposed accident prediction 

methodology. The methodology proposed in this research separated rural multilane road 

networks into segments and intersections. Specific models were developed for each 

transportation element. Three classes of models were proposed: models with covariates, baseline 

models applicable for specific values of covariates, and general Average Daily Traffic (ADT) 

models.  For the first model class (models with covariates), the relationship between crashes and 

geometric design features was captured via the covariates inside the statistical model. It was 

proposed that models be estimated for undivided and divided segments, as well as for most types 

of intersections, and where possible by injury severity and crash type. The models with 

covariates produced for divided segments were used to estimate baseline models by substituting 

variables meeting baseline conditions for Chapter 9 of the HSM. For the second model class, 

statistical models were developed using a given set of baseline conditions. The baseline 

conditions usually reflect the nominal conditions agencies most often used for designing 

segments and intersections. Most models proposed for Chapter 9 were calibrated using this 

approach. For the third model class, general ADT models were developed for the following 

transportation elements: 4-lane undivided segments, 3- and 4-legged signalized intersections, as 

well as 3- and 4-legged unsignalized intersections. These models reflect the average conditions 



 

 xx

found in the data for each transportation element and can be used for cases where the user has 

limited information about the geometric design features for the particular project under study. 

For 4-legged signalized intersections, the general ADT models were used as baseline models in 

Chapter 9. Due to the small sample size, the general ADT models for 3-legged signalized 

intersections were not utilized as baseline models for the chapter.  

The fourth task focused on describing the framework for developing the models. This 

framework, which is very important for developing sound and statistically valid predictive 

models, included four steps: determine the modeling objective matrix; establish the appropriate 

processes to develop the models; determine the inferential goals; and select the computation 

techniques and tools. All the models were developed using this modeling framework. The 

coefficients of the models were estimated using negative binomial (NB) regression methods, 

with the exception of models of crash counts by severity. In this task, various methods used for 

estimating AMFs were also described.  

The last task consisted of summarizing the modeling results. Models were proposed for 

the three types of intersections, undivided and divided highway segments, by crash type, and by 

crash severity. More than 80 models were estimated in this research or derived from recent 

relevant research. The models were assessed using various goodness-of-fit measures, and most 

provided good statistical properties. From the models developed or assembled, a few were 

recommended to be included in Chapter 9 of the HSM. Table 1 summarizes the elements for 

which baseline models are recommended and the approach used to derive them. This table 

includes a reference to the table in the report in which the actual model is presented. 
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Table 1 Recommended Baseline Models for Chapter 9 of the HSM 
Transportation Elements Approach Used 

Segments  
4-Lane Undivided 
 

Models estimated from data meeting baseline 
conditions (Table 6.23).  
General ADT crash type models also estimated 
(Tables 6.43 � 6.48). 

4-Lane Divided Models estimated from models with covariates by 
substituting variables meeting baseline conditions 
(Table 6.34). 

Intersections  
3-Legged Unsignalized Models estimated from data meeting baseline 

conditions (Table 6.2). 
4-Legged Unsignalized  Models estimated from data meeting baseline 

conditions (Table 6.1). 
3-Legged Signalized No models recommended due to small sample 

size. 
4-Legged Signalized General ADT models estimated (Table 6.4).   

 

Several AMFs were produced from this work. Some of these AMFs were estimated using 

the models with covariates, while others were vetted by the Joint NCHRP 17-25/17-29 Expert 

Panel committee. The AMFs assembled from this work are summarized in Table 2. 

Table 2 List of AMFs for Rural Multilane Highways 
Intersections Segments 
● Sight distance (unsignalized 3- and 4-
legged) 
● Left-turning lane on major approach 
(unsignalized 3- and 4-legged) 
● Right turning lane on major approach 
(unsignalized 3- and 4-legged) 
● Intersection angle (unsignalized 3- and 
4-legged) 

● Lane width (divided and undivided) 
● Shoulder width (divided and undivided) 
● Sideslope 
● Horizontal curve density 
● Median width 
● Median barrier 

 

Finally, the cross-validation study showed that some models transferred very well, as 

long as they performed well in the jurisdiction where they were estimated.
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CHAPTER I 

Introduction 

 

Background 

There is a significant need to improve the explicit consideration of highway safety in 

making decisions on roadway planning, design, and operations. To receive appropriate 

consideration, safety needs to be dealt with quantitatively within the transportation planning and 

highway design processes (De Leur and Sayed, 2002; Lord and Persaud, 2004; Ladron de 

Guevara et al., 2004; Bonneson et al., 2005). For instance, many other factors, such as 

environmental impacts, capacity, and vehicle delays, among others, are already estimated in 

quantitative terms. Unfortunately, safety is often incorporated into these processes in a 

qualitative sense and, more often than not, the final outcome of the analysis is left to the 

judgment of the engineer or planner.  

The lack of available tools is a deterrent to quantifying the safety of a transportation 

facility during the planning or highway design process. Recognizing this problem, a group of 

Transportation Research Board (TRB) committees has identified the need for more explicit and 

quantitative consideration of safety within the above-mentioned processes and proposed the 

development of a Highway Safety Manual (HSM). Portions of the Manual are being developed 

under several NCHRP projects, and it is expected that the HSM will be recommended for 

adoption by AASHTO. The HSM will serve as a tool to help practitioners make planning, 

design, and operations decisions based on safety. It will serve the same role for safety analysis 

that the Highway Capacity Manual (HCM) serves for traffic-operations analyses. A TRB Task 

Force for the Development of Highway Safety Manual was formed to guide the development of 



 

 2

the HSM. The purpose of the HSM, as identified by the HSM Task Force (HSM TF), will be to 

provide the best factual information and tools in a useful and widely accepted form to facilitate 

specific consideration of safety in the decision-making process. 

The TRB committees interested in the HSM have formed a Task Force to guide its 

development. Several NCHRP studies are currently under way or completed to develop key 

aspects of the HSM. NCHRP Project 17-18(4) recommended the content and outline of the first 

edition of the HSM and developed a plan for a research program needed to develop that first 

edition within five years. Recommendations developed in NCHRP Project 17-18(4) and 

approved by the HSM TF indicate that the first edition of the HSM should include models for 

making quantitative estimates of the expected safety performance of rural multilane highways, 

rural two-lane highways, and urban and suburban arterials. Research to address the latter two of 

these facility types has already been initiated and these projects were near completion at the time 

this report was prepared. Predictive models for rural two-lane highways have been developed by 

FHWA, and NCHRP Project 17-18(4) has developed a HSM chapter (i.e., Original Chapter 8 � 

now, tentatively labeled as Chapter 10) incorporating those models. NCHRP Project 17-26 is 

developing models for predicting the safety performance of urban and suburban arterials and the 

results will be incorporated into Chapter 10 (or 12). Therefore, the only facility type to be 

included in the first edition of the HSM for which further modeling work is needed is rural 

multilane highways. 

 

Research Objectives and Scope 

The objective of this research is to develop a methodology that will be used to predict the 

safety performance of various transportation elements considered in the planning, design, and 
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operation of non-limited-access rural multilane highways. This methodology will be 

incorporated as Chapter 9 in Part III of the HSM (see Appendix G) (note: At the time this report 

was prepared, Chapter 11 has been tentatively designated as the chapter covering multilane rural 

highways; to be consistent with previous work on this project, the research team will keep 

referring to Chapter 9 for the methodology to estimate the safety performance of multilane rural 

highways). 

The rural network to be considered in the research includes all highway facilities located 

in rural areas, other than freeways, that serve the primary function of providing movements 

among medium to large urban areas. The term �rural� is defined using FHWA and AASHTO 

guidelines, since these are commonly used by most transportation and highway agencies for 

consistency with Federal and national usage. These guidelines classify rural areas as places 

outside the boundaries of urban places where the population is less than 5,000 inhabitants. 

Consequently, any highway located outside the city limits of an urban agglomeration above 

5,000 inhabitants would be considered rural (AASHTO, 2004).  

The term �multilane� refers to facilities with four or more through lanes, that is, at least 

two lanes in each direction, as defined by the HSM TF. These facilities may be divided with a 

rigid or flexible barrier, paved or landscaped median, or a two-way left-turn (TWLT) lane, but 

should not have access and egress limited to grade-separated interchanges (i.e., not freeways). 

Facilities may have occasional grade-separated interchanges, but these should not be the primary 

form of access and egress, and the methodology proposed in this project would not apply to the 

sections passing through the interchanges. 
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Organization of The Report 

 A brief description of the content included in the remainder of the chapters is provided 

below: 

Chapter II documents the literature review on existing statistical models, Accident 

Modification Factors (AMFs), and other predictive methodologies relevant to this study.  

Chapter III summarizes the survey results conducted in this study. This chapter also 

describes the characteristics of the survey instrument, as well as the candidate input variables of 

interest by the study participants. 

Chapter IV describes the characteristics of the data collected in this project. The data 

were assembled for developing statistical models, estimating AMFs, and evaluating the re-

calibration of models. Data collected from the states of Texas, California, Minnesota, New York, 

and Washington were used in this project. 

 Chapter V describes the model development and accident prediction methodology. The 

chapter provides details about the model classes and functions, the modeling framework, and 

methods for estimating AMFs.  

 Chapter VI summarizes the modeling results for estimating the safety performance of 

rural multilane highways. The chapter provides the modeling results for intersection and segment 

models, as well as models developed by crash type and accident modifications factors 

recommended for application in the prediction methodology. The chapter also includes the 

results of the cross-validation study. 

 Chapter VII provides a summary of the work accomplished in this project and proposes 

recommendations for further work. 
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 The appendices document additional models from related research for consideration, 

HSM Chapter 9, the survey instrument, Cumulative Residuals (CURE plots), crash severity 

models, a methodology for estimating the variance of the product between baseline models and 

AMFs, and the Joint NCHRP 17-25/17-29 Expert Panel assessment. 
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CHAPTER II 

Literature Review 

 

This chapter documents the literature review relevant for this project. The chapter 

summarizes key outcomes of published and unpublished documents as well as existing research 

activities in the United States (U.S.). The chapter is divided into two sections. The first section 

summarizes key studies on the estimation of the safety performance of multilane highways in 

North America and around the world. The second section describes studies related to the safety 

performance of rural intersections located on multilane highways.  

 

Safety Performance of Multilane Rural Highways  

There are more than 4 million miles of roadway in the United States (BTS, 2005). About 

77% of these roadways, roughly 3.1 million miles, are located in or near rural areas (based on a 

population below 5,000). Wang et al. (1998) reported that about 35,000 miles of arterial 

highways are classified as non-freeway rural highways. This immense rural network results in a 

widespread dispersal of fatal and non-fatal injuries, and property damage only (PDO) crashes 

across the U.S. Although fewer vehicles travel in rural areas, a driver is at greater risk to be 

involved in a collision than in urban areas. 

 According to the United States General Accounting Office (U.S. GAO, 2004), the 

National Highway Traffic Safety Administration (NHTSA) estimates that crashes occurring on 

rural highways account for more than 60% of all fatal crashes occurring on the United States 

highway network. The significance of these deaths is even more striking considering that the 

rural network carries only 40% of the nation�s traffic in any given year. 
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 As reported by the US DOT (2002), non-freeway rural highway facilities (i.e., two-lane 

and multilane highways combined) experience between 1.2 and 2 times more fatal crashes than 

urban highways grouped under the same functional highway classification. When the number of 

vehicle-miles traveled is included in the comparison, the gap between rural and urban highways 

becomes even larger, as seen in Table 2.1. 

Table 2.1 Fatal Crashes and Fatal Crash Rate by Highway Classification (US DOT, 2002) 
Functional 
Classification 

1998 1999 2000 

Rural Number Rate Number Rate Number Rate 
Principal Arterial 5,485 2.3 5,385 2.2 5,236 2.1 
Minor Arterial 4,300 2.6 4,300 2.6 4,352 2.5 
Major Collector 5,956 2.9 5,933 2.9 5,783 2.8 
Urban       
Principal Arterial 5,322 1.4 5,107 1.3 5,157 1.3 
Minor Arterial 3,359 1.1 3,227 1.0 3,335 1.0 
Major Collector 1,044 0.8 1,039 0.8 1,036 0.8 

 

There has been a significant amount of research conducted on the safety performance of 

rural highways. Most of this research has been concentrated on rural two-lane highways (Vogt 

and Bared, 1998; Harwood et al., 2000; Qin et al., 2004). This focus is not surprising given the 

fact that the rural network is composed mainly of two-lane highways. Consequently, there has 

been very little research conducted on the safety performance of multilane highways in rural 

areas. 

 The research carried out on multilane rural highways can usually be grouped under two 

categories. The first category regroups studies that specifically looked at the safety performance 

of multilane rural highway facilities. The second category encompasses research that focused on 

the safety effects of converting rural two-lane highways to either undivided or divided multilane 

facilities. Studies categorized under both categories are described in the next two sections. 
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Multilane Highways 

There have been few studies that examined the safety performance of multilane rural 

highways in North America. In a 1991 study, Persaud (1991) investigated the safety performance 

of rural and urban multilane highway segments in Ontario, Canada. To accomplish this task, 

Persaud developed several statistical models and used the empirical Bayes (EB) method to refine 

(or improve) the estimated long-term safety performance of these facilities. He found that 

statistical models predicted more collisions for rural multilane highways than urban segments for 

the same level of exposure and number of lanes. As expected, divided rural segments performed 

better than undivided segments. 

 Fitzpatrick and Balke (1995) examined the safety performance of TWLT lanes on four-

lane rural highways in Texas. This type of design is often used on rural highways located 

adjacent to urban areas, where the adjacent land is in the process of being fully urbanized for 

commercial activity. Based on a cross-sectional study, their results show no statistical differences 

in the number of crashes between highways with TWLT lanes and highways with flush medians 

with low driveway densities. The authors also found no difference in the way these two median 

treatments operated in rural areas. 

In a third study, Wang et al. (1998) evaluated the safety performance of non-freeway 

multilane rural highways in five states using data from the Highway Safety Information System 

(HSIS), a database managed by the University of North Carolina under contract from FHWA. 

These authors collected supplemental information at the sites selected as part of their study. They 

developed a statistical model using explanatory variables, such as access control, shoulder width, 

area type (e.g., rural municipal or non-municipal), and functional classification (e.g., principal 

and minor arterials). The outcome of the analysis showed that functional class and area type 
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explained most of the variation for the number of crashes on multilane highway facilities. 

Several highway geometric design elements influenced the safety performance, but their impacts 

were less significant. 

 Council and Stewart (1999) developed statistical models for rural four-lane undivided 

and divided highways. The models were developed as part of a cross-sectional study for 

comparing the safety performance between rural two-lane and four-lane highways. Council and 

Stewart used data collected in California, Minnesota, North Carolina, and Washington. The 

models were developed using traffic flow and shoulder width as input variables. Larger shoulder 

widths were associated with fewer crashes for divided four-lane highways.  

 Persaud and Bahar (2000) investigated the use of statistical models for screening high-

risk sections of rural highways in Ontario, Canada. They developed a Potential for Safety 

Improvement Index (PSI) for identifying these sites. Several statistical models were produced, 

including models for rural divided and undivided four+-lane highways. Similar to the study 

conducted by Persaud (1991), the models predicted more crashes for undivided than divided 

rural multilane highways. 

 The SafetyAnalyst project has developed a suite of models for predicting the safety 

performance of multilane highways that are detailed in an unpublished 2004 technical 

memorandum. These models will be used in the SafetyAnalyst interim tools and will 

subsequently be improved for use in the final tools if required. Crash models for both all crash 

severities (i.e., total) and fatal and non-fatal injuries, including possible injury, crashes were 

calibrated using data from Minnesota, Ohio, Washington, and North Carolina. Separate models 

were developed for rural multilane undivided and rural multilane divided roadways. All 

statistical models used input flows as the only covariate. 
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 At the international level, a more substantial amount of research has been conducted on 

the safety performance of multilane highways. However, given the fact that the applicability of 

this research to the U.S. is limited, only the most relevant study outcome is summarized herein. 

Mountain et al. (1996) developed statistical models for predicting the safety performance of four-

lane rural highways in the U.K. The number of minor intersections on multilane highways was 

positively associated with the number of crashes, although in a non-linear fashion. Amoros et al. 

(2003) compared the crash experience for different types of highway and severity levels in 

several counties in France. They found that rural non-freeway facilities usually experienced 

higher crash frequency and severity than freeway facilities for the same level of exposure. Abbas 

(2004) developed a total of 200 statistical models for predicting the safety of rural highways in 

Egypt. Although two-lane and multilane rural highways were mixed together, Abbas reported 

that rural desert roads were more dangerous than any other type of rural highways. 

 In Australia, McLean (1996) evaluated the safety performance of cross-section design 

elements of multilane rural highways. He found that shoulder widths and roadside design 

influenced the safety of multilane highway facilities. Prinsloo and Goudanas (2003) produced 

descriptive models (in a table format) for determining the safety effects of cross-section design 

elements for four-lane rural highways. Roadway curvature, the presence of a median, and 

shoulder widths influenced the safety performance of rural highways. Turner et al. (2003) 

developed several statistical models predicting the safety performance of multilane rural 

highways by crash type in New Zealand. The proposed models were developed as part of a 

safety management system that will eventually be implemented by various transportation 

authorities in New Zealand.  
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 In a recent study conducted in Italy, Caliendo et al. (2007) developed a series of 

statistical models to estimate the effects of geometric design features on the safety performance 

of multilane rural highways; tangents and curves were modeled separately. Three model types 

were estimated: the Poisson model, the NB model, and the NB multinomial, which is a model 

where the dispersion parameter is modeled as a function of the segment length. A similar 

approach was used in this project, as detailed in Chapter V. The models showed that the number 

of intersections on the segments was associated with an increase in the number of collisions. For 

curves, it was found that a smaller radius is positively associated with crashes. 

 

Converting Rural Two-Lane to Multilane Highways 

Three studies have been identified on the evaluation of converting two-lane to four-lane 

rural highways in the literature. In the first study, Rogness et al. (1982) evaluated the safety 

effects of converting rural two-lane with full-paved shoulders to four-lane undivided highways. 

Data were collected at 60 sites in Texas for highways converted between 1969 and 1976. During 

this period, about 394 miles of rural two-lane highways were upgraded. The analysis was 

performed using a simple before-after study; hence, the results were not adjusted for the 

regression-to-the-mean (RTM) and site selection biases. The authors reported that highways 

experienced less crashes per unit of exposure after they were converted. However, the magnitude 

of the difference was not consistent across crash types. 

 As described above, Council and Stewart (1999) developed statistical models for 

estimating the safety of rural two-lane and four-lane highways. The goal of the study consisted of 

comparing both models and determining the change in safety if a two-lane highway were to be 

converted to a four-lane divided or undivided highway. The model comparison has shown that 
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converting two-lane rural highways would reduce the number of crashes for the same level of 

exposure. 

 The third study was performed by the Kentucky Transportation Center (Agent and 

Pigman, 2001). This study evaluated the safety effects of converting rural two-lane to four-lane 

highways, by adding an additional lane on each side of the traveled-way. The authors examined 

25 highway segments. Using a simple before-after study, they found that four-lane highways 

experienced up to 45% fewer crashes after the conversion. Similar to the study by Rogness et al. 

(1982), the site selection and RTM biases were not corrected for in this analysis. 

 In summary, the literature on the safety performance of multilane highways indicates that 

multilane highways perform on average better than two-lane highways for the same level of 

exposure. The outcome was similar for both cross-sectional and before-after studies. The next 

section summarizes the safety performance of rural signalized and unsignalized intersections on 

multilane highways. 

 

Safety Performance of Intersections on Multilane Rural Highways  

 This section summarizes work performed on the safety performance of intersections 

located on multilane rural highways. Because of their relevance, models developed in two 

recent FHWA sponsored research projects are covered below in relatively intense detail. 

This is preceded by a brief description of the only other known set of models of possible 

relevance. These models were developed for the SafetyAnalyst project.  

 For the SafetyAnalyst project, a suite of models detailed in an unpublished 2004 technical 

memorandum have been developed for use in the SafetyAnalyst interim tools for network 

screening, and development and evaluation of treatments. The models of relevance were 
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calibrated from intersections on both multilane roadways and two-lane roadways. At present, the 

only independent variables are major and minor road entering Annual Average Daily Traffic 

(AADT). Calibration of models with covariates (i.e., sometimes they are referred to as full 

models), possibly with separate ones for intersections on multilane roads, and incorporating 

additional variables available in HSIS data, will be done within the next year with a view to 

including these in the final tools.  

 Currently, total crash (AADT only) models are provided for the following rural 

intersection types using Minnesota HSIS data for the years 1995-1999: 

• Rural 3-legged intersections with minor-road stop control 

• Rural 3-legged intersections with signal control 

• Rural 4-legged intersections with minor-road stop control 

• Rural 4-legged intersections with all-way stop control 

• Rural 4-legged intersections with signal control 

The functional form for intersection statistical models for the interim tools is: 

 1 2
0 1 2F Fβ βµ β=  (2.1) 

Where, 

 µ  = mean number of crashes per intersection per year; 

 1F  = entering AADT on the major road (veh/day); 

 2F = entering AADT on the minor road (veh/day); and 

 0 1 2, ,β β β  = coefficients estimated from data. 
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That these current models only contain AADT variables, and that they are calibrated from 

combined two-lane and multilane data, would make them only marginally relevant to NCHRP 

17-29. 

 In the FHWA projects, there were separate models for rural 3-legged (Type III) and 

4-legged (Type IV) stop-controlled intersections, both with four lanes on the major and two 

lanes on the minor. In the first project, Vogt (1999) used three years of data from sites 

located in California and Michigan. Models for all crashes occurring within 250 ft of the 

intersection center are shown in Table 2.3 below, which is preceded by Table 2.2 that 

describes the variables used. The model form was as follows: 

31 2

( )

0 1 2 e

n

j j
j

x

F F
β

β βµ β =
∑

=        (2.2) 

Where, 

µ  = mean number of crashes per year; 

 1F  = entering AADT on the major road (veh/day); 

 2F  = entering AADT on the minor road (veh/day); 

3 4, , , nx x xK  = the values of the non-traffic highway variables (e.g., sight distance, skew 

angle, etc.); and 

0 1 2, , , , nβ β β β   K = coefficients estimated from data. 

 

The second FHWA project was reported by Lyon et al. (2003) and Oh et al. (2003) 

based on the project report by Washington et al. (2005). These documents present the 

results of an effort to validate and to subsequently recalibrate the accident prediction models for 

rural intersections detailed in two previous FHWA reports. The first report is the aforementioned 
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one by Vogt (1999), which developed the models for 3- and 4-legged stop-controlled 

intersections of four-lane by two-lane rural roads and also models for signalized intersections of 

two-lane roads. The other report (Vogt and Bared, 1998) documents the development of models 

for 3- and 4-legged stop-controlled intersections of two-lane rural roads. These models are not of 

direct relevance to NCHRP 17-29, but they are worth noting in that they do form the basis for the 

models currently in the prototype HSM chapter (now Chapter 8). 

 In the recalibration effort, the data used to calibrate the original models were combined 

with the additional years� data for the same sites as well as the additional sites from other States. 

Table 2.2 provides the definition of variables used in the recalibrated model for total accidents, 

for which the coefficients are shown in Table 2.3. These recalibrated models generally had better 

goodness-of-fit (GOF) measures than comparable models from the earlier FHWA research as 

measured by the value of the dispersion parameter. They also had more variables that were 

significant at the 10% level. The models� coefficients associated with the major and minor road 

AADTs were also of a similar magnitude to the earlier models. For all models, the major road 

AADT exerts a larger influence on accident predictions than the minor road AADT. 
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Table 2.2 Variable Definitions for Models in Table 2.3 (Washington et al., 2005) 
Variable Name Variable Description 
F1   Average daily traffic on major road (vehicles per day) 
F2   Average daily traffic on minor road (vehicles per day) 
DRWY1  Number of driveways within 250 ft. of intersection on major road 
COMDRWY1  Number of commercial driveways on major road within 250 ft of the 

intersection center 
HAU   
 

Intersection angle variable defined where the angle between the major and 
minor roads is measured from the far side of the minor road:  
3-Legged Intersections 
Angle minus 90 if minor road is to the right of the major road in the 
increasing direction 
90 minus angle if minor road is to the left of the major road in the increasing 
direction 
4-Legged Intersections 
(right angle - left angle)/2 

MEDTYPE1  Median type on major road (0 = no median, 1 = painted, 2 = curbed, 3 = 
others) 

MEDWDTH1  Median width on major road (ft) 
LTLN1S Presence of left-turn lane on major road (0=no, 1=yes) 
PKLEFT  Peak left-turn percentage (%) 
PKTHRU2  Peak through percentage on minor road (%) 
PKTRUCK  Peak truck percentage passing through the intersection (%) 
SDR2  Right-side sight distance on minor road (ft) 
VEI1  
 

Sum of absolute change of grade in percent per hundred ft for each curve on 
major road any portion of which is within 800 ft of the intersection center, 
divided by the number of such curves 
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Table 2.3 Models from Two FHWA Projects for Total Accidents at Stop-Controlled 
Intersections on Rural Multilane Roads (Washington et al., 2005) 

Note: Model form is given by Eq. 2.2 
Model coefficients and p-values 

for 3-legged intersections 
Model coefficients and p-values for 

4-legged intersections 
Variables Original  

(Vogt & Bared, 
1998) 

Recalibrated by 
(Washington et al. 

2005) 

Original  
(Vogt & Bared, 

1998) 

Recalibrated 
(Washington et al. 

2005) 

Intercept [ln(β0)] -12.2196  
(0.0001)* 

-10.1914 
(0.0000) 

-9.4631 
(0.0003) 

-7.4713 
(0.0001) 

F1 ( 1β )  1.1479  
(0.0001) 

0.8877 
(0.0000) 

0.8503 
(0.0022 ) 

0.7350 
(0.0001) 

F2 ( 2β ) 0.2624 
(0.0024) 

0.3228 
(0.0000) 

0.3294 
(0.0087) 

0.2390 
(0.0099) 

LTNIS 
  

-0.4841 
(0.0362)  

DRWY1 0.0391 
(0.1023)    

COMDRWY1 
 

0.0681 
(0.0154)   

VEI1 
 0.1081 

(0.0519)   

HAU 
 0.0101 

(0.0861)   

MEDWDTH1 -0.0546 
(0.0285) 

-0.0106 
(0.0760)   

MEDTYPE1 
 -0.3209 

(0.0700)   

SDR2 
 

  
-0.0003 

(0.0403) 

PKTRUCK 
 

  
-0.0479 

(0.0000) 

PKTHRU 
 

  
0.0249 

(0.0034) 

PKLEFT 
 

 
0.1100 

(0.0076) 
0.0229 

(0.0525) 
Dispersion parameter 0.389 0.423 0.458 0.400 
*Standard Error 

The authors of the two papers concluded that except for AADT counts, there was little 

consistency in the variables found to be significant predictors of intersection crashes across the 

various models.  Given that fact, it was concluded that the results of the recalibration of models 

with covariates provided strong support for the proposed Interactive Highway Safety Design 

Model  (IHSDM) modeling approach (and that are currently in the HSM Chapter 8, now HSM 
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Chapter 10) of applying independently derived AMFs to baseline models rather than models with 

covariates to estimate the safety of an intersection. To that end, that research also developed 

baseline models and used these in a special procedure to derive initial AMF estimates for some 

variables. Those results, which are documented in the full project report, are of relevance in that 

they are recommended for consideration for the accident prediction algorithm for stop-controlled 

intersections on rural multilane roads and are presented in detail later in this report (Appendix 

A). 

 

Chapter Summary 

 This chapter has summarized the review of the literature of documents related to the 

safety performance of rural multilane highway segments as well as rural intersections located on 

rural multilane facilities. The chapter showed that the available literature on safety performance 

of multilane rural highways is not extensive, and with a few exceptions, not solid enough to form 

the basis of a Highway Safety Manual accident prediction methodology.  The next chapter 

summarizes the survey results conducted in this study.  
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CHAPTER III 

Survey Design and Results 

 

This chapter describes the characteristics of the survey design and results. The chapter is 

divided into three sections. The first section describes the survey instrument used in this study.  

The second section summarizes the candidate input variables that could be used for estimating 

the safety performance of multilane rural highways. The third section describes the survey 

results. 

 

Survey Instrument 

 This section describes key elements of the survey conducted in this study. The first part 

provides details on the selection process for identifying state DOTs that were surveyed. The 

second part summarizes the characteristics of the survey instrument.  

 

Selection Process 

At the request of the NCHRP project panel, the research team conducted a limited survey 

of state DOTs rather than performing the full-fledged survey originally planned in the work plan. 

In order to avoid duplicating the survey effort of other projects (e.g., contacting the same survey 

participants within a year interval), the panel has asked the research team to determine whether 

the information contained in these surveys could be used for NCHRP 17-29. A brief assessment 

of the survey results carried out in this project is presented at the end of this chapter.  

 The research team requested the original survey responses from the original NCHRP 17-

26 project. The intent of the request was two-fold. First, the request was used to determine 
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potential state agencies that have shown interest in the HSM effort and the development and 

application of crash predictive models. Second, the team wanted to obtain information about 

accessing potential databases that could be used for this study. The limited survey allowed the 

team to focus the survey effort to a selected number of agencies. 

After analyzing study results of NCHRP 17-26, the research team has identified 10 state 

agencies that have shown an interest in the development and the application of the HSM. Table 

3.1 shows the state agencies selected to be part of this survey. This table also shows whether or 

not the agencies could provide crash data, and information on segments and intersections. 

Table 3.1 State Transportation Agencies Selected for Limited Survey 
State Agencies Predictive 

Methodology 
Crash 
Database 

Segment 
Database 

Intersection 
Database 

Illinois No Yes Yes Yes 
Indiana Yes Yes Yes No 
Maryland No Yes Yes No 
Missouri No Yes No No 
Montana No Yes Yes Yes 
North Carolina No Yes Yes No 
Rhode Island No Yes No No 
Texas No Yes Yes No* 
West Virginia No Yes Yes No 
Wyoming No Yes No No 
* Partial data are available. 

 

Survey Characteristics  

 The survey was sent by e-mail to the contact person identified by AASHTO and TRB for 

each state DOT identified above. The contact person was usually the head of the research 

division of the state agency. If the contact representative did not send back the survey within 

three weeks after the survey was e-mailed, the research team contacted the contact person by 

phone to ensure he or she received the survey and to answer any potential questions. 

 The survey was divided into three parts. The first part sought to determine if the selected 

DOTs are currently using or developing statistical models to predict the safety performance of 
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multilane rural highways. The second part focused on input variables. The list shown in Tables 

3.2 and 3.3 was submitted to the survey participants. The survey participants were asked to rate 

these input variables on a scale from one to five, with one representing the lowest priority and 

five representing the highest priority. The survey participants were able to add input variables 

not listed. The last part covered questions on data availability and sought information on access 

to, and availability of crash data; geometric design data for segments and intersections; traffic 

flow data for segments, and major and minor approaches of intersections; and georeferenced 

data. The survey also sought to determine if the state agency can provide data for before-after 

studies for the aim of developing AMFs. A copy of the survey instrument is provided in 

Appendix B. 

 

Identification of Candidate Model Inputs 

 This section describes a list of input variables that were identified by the research team as 

variables showing promise in terms of predicting the variation in crashes on multilane rural 

roads. The list was submitted to the survey participants. 

 Tables 3.2 and 3.3 summarize candidate input variables for the predictive methodology of 

multilane rural highway segments and intersections. The list contains a mix of geometric design, 

traffic operations, and human factors variables. The list of input variables was determined based 

on their potential effects on the safety performance of rural highways, as discussed in Chapter II, 

and the likelihood that the variables can be realistically collected in the field. 
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Table 3.2 Candidate Input Variables for Segments 
Variables Type 

Delineation 
Design or posted speed 
Grades 
Horizontal curves 
Illumination 
Land-use adjacent to traveled-way 
Lane widths 
Median type 
Median width 
Number and type of median openings 
Number and type of driveways 
Number of through lanes 
Pavement friction 
Raised pavement markers 
Roadside design/clear zones/roadside objects 
Roadside distractions (e.g., billboards, signage, etc.) 
Shoulder width/curb type 
Shoulder rumble strips 
Spacing between driveways 
Speed variance of vehicular traffic 
Traffic volume (AADT) (veh/day) 
Traffic volume in peak period (veh/hr) 
Traffic volume for different time periods (average veh/hr) 
Traffic volumes for individual driveways 
Vehicle mix (e.g., percent trucks) 
Vehicle speed (average for different time periods) 
Vertical curvature 
Wet pavement 
Ice on pavement 
Snow on pavement 
Visibility restrictions (e.g., fog, glare, etc.) 

Traffic Operations 
Traffic Operations 
Geometric Design 
Geometric Design 
Traffic Operations 
Traffic Operations 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Traffic Operations 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Traffic Operations 
Traffic Operations 
Traffic Operations 
Traffic Operations 
Traffic Operations 
Traffic Operations 
Traffic Operations 
Geometric Design 
Traffic Operations 
Traffic Operations 
Traffic Operations 
Human Factors 
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Table 3.3 Candidate Input Variables for Intersections 
Variables Type 

Approach speed (observed) 
Approach speed (posted or design speed) 
Horizontal alignment of intersection approaches 
Illumination 
Intersection sight distance 
Intersection skew angle 
Lane widths on intersection approaches 
Level of service (LOS) (only at signalized intersections) 
Median type/presence of median 
Number of intersection legs 
Number of through lanes on intersection approaches 
Number and length of added through lanes at intersections 
Presence/number of left-turn lanes 
Presence of right-turn lanes 
Shoulder/curb type on intersection approaches 
Shoulder/curb width on intersection approaches 
Signal phasing (e.g., left-turn phasing) 
Signal timing 
Signal visibility 
Spacing between intersection and nearby driveways 
Type of traffic control 
Traffic volumes (AADTs) for major- and minor-road legs 
(AADTs)  
Type of left-turn channelization (painted vs. raised curb) 
Vehicle mix (e.g., percent trucks) 
Weather variables 

Traffic Operations 
Traffic Operations 
Geometric Design 
Traffic Operations 
Geometric Design 
Geometric Design 
Geometric Design 
Traffic Operations 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Geometric Design 
Traffic Operations 
Traffic Operations 
Human Factors 
Geometric Design 
Traffic Operations 
 
Traffic Operations 
Geometric Design 
Traffic Operations 
Traffic Operations 

 

In the process of identifying candidate input variables, other variables specifically related 

to human factors issues were also identified. For instance, age and experience of older drivers 

have an influence on the risk of crashes. However, many of these variables cannot be collected 

easily. Nonetheless, they were included in the survey instrument. 

 As discussed in Chapter II, only a few predictive models currently exist for estimating the 

safety performance of multilane rural highways. The characteristics of these models are 

summarized in Tables 3.4A and 3.4B. These tables are used to show input variables that have 

been used from previous research done on multilane rural highways. Tables 3.4A and B do not 

provide any inferences, i.e. standard errors, on the coefficients since they were not available from 

the original source. The functional form for the models presented in these tables is the following: 
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Where, 

 µ = mean number of crashes per year; 

 L = the length of the segment; 

 F = flow in vehicles per day (AADT); 

 ix = a series of covariates (access control, etc.); and 

 0 1 2, , , , nβ β β β   K = coefficients estimated from data. 
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Table 3.4A Summary of Existing Statistical Models for Estimating the Safety Performance of Multilane Highway Segments 
Variables Study 
Author(s) Persaud (1991) Wang et 

al. (1998) 
Council and Stewart (1999) 

 
Persaud and Bahar 

(2000) 
Highway type Divided Undivided Divided/ 

Undivided 
Divided 
(NC)a 

Divided 
(WA) 

Divided 
(MN) 

Divided 
(CA) 

Undivided 
(CA) 

Divided Undivided 

Number of lanes 4 4 4+ 4 4 4 4 4 4+ 4+ 
Severity All All All All All All All All All All 
Intercept 0.460 0.653 0.0002 0.0092 0.0107 0.00071 0.000125 0.000164 0.00272 0.000175 
Flow 1.304 1.304 1.073 0.761 0.635 1.064 1.071 1.121 0.730 1.031 
Average roadside 
rating 

-- -- 0.131 -- -- -- -- -- -- -- 

Access control 
(1=partial control, 
0=no control) 

-- -- -0.151 -- -- -- -- -- -- -- 

Driveway density -- -- 0.034 -- -- -- -- -- -- -- 
Intersections with 
left turn lanes/mile 

-- -- 0.163 -- -- -- -- -- -- -- 

Intersections without 
turn lanes/mile 

-- -- 0.052 -- -- -- -- -- -- -- 

Functional class 
(1=rural municipal, 
2=minor collector) 

-- -- -0.572 -- -- -- -- -- -- -- 

Shoulder width (ft) -- -- -0.094 -0.288 -- -0.234 -- -- -- -- 
Median width (ft) -- -- -0.003 -- -- -- -- -- -- -- 
Area location type 
(1=rural municipal, 
2=rural non-
municipal) 

-- -- 0.429 -- -- -- -- -- -- -- 

φ  (inverse of 
dispersion 
parameter) 

2.90 Poisson 2.19 1.61 Poisson 1.46 1.81 5.56 5.70 

a NC=North Carolina, WA=Washington, MN=Minnesota, CA=California  
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Table 3.4B Interim SafetyAnalyst Statistical Models for Estimating the Safety Performance of Multilane Highway Segments 
Variables  

Highway type Divided 
(OH) a 

Divided 
(NC) 

Divided 
(MN) 

Divided 
(OH) 

Divided 
(NC) 

Divided 
(MN) 

Undivided 
(OH) 

Undivided 
(NC) 

Undivided 
(MN) 

Undivided 
(WA) 

Undivided 
(OH) 

Undivided 
(NC) 

Undivided 
(MN) 

Number of lanes 4 4 4 4 4 4 4 4 4 4 4 4 4 
Severity Injury Injury Injury All All All Injury Injury Injury All All All All 
Intercept 2.20E-4 0.042 2.23E-4 0.017 1.68E-5 0.015 4.45E-5 0.0064 0.002 0.014 5.76E-4 1.14E-3 4.18E-4 

Flow 1.07 .49 1.03 0.60 1.21 0.50 1.06 0.66 0.77 0.60 0.72 0.74 0.81 

φ  (inverse of dispersion 

parameter) 

4.54 1.88 2.22 9.09 3.45 1.89 3.03 3.12 1.79 5.26 11.11 3.22 5.00 

a OH=Ohio, WA=Washington, MN=Minnesota, NC=North Carolina 
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Table 3.4 shows that most available models use traffic flow as the only input variables. 

The model proposed by Wang et al. (1998) includes several input variables, including the 

number of intersections on the selected segment. This table also shows that the exponent for the 

traffic flow variable is, in several cases, larger than one. As suggested by Persaud (1991), 

multilane facilities may have an increasing rate of accident occurrence as traffic flow increases 

because more lane changes occur at high flows. 

 

Survey Results 

Six of the ten states surveyed returned the survey instrument. They included Illinois, 

Washington, Maryland, Missouri, Texas, and West Virginia. 

The survey results show that the States of Texas and Missouri employed a methodology 

for predicting the safety performance of multilane highways. The State of Missouri uses the 

methodology for identifying highly hazardous locations on the rural network.  

 The input variables that were considered of highest priorities by the survey participants 

are summarized in Table 3.5.  These variables shown in this table have been rated with an overall 

average of four or above. 

Table 3.5 Highest Priority Candidate Input Variables 
Segments Intersections 

Delineation 
Roadside Design 
Horizontal Curves 
Median Width 
Shoulder Width 
Traffic Volumes 

Type of Traffic Control 
Intersection Sight Distance 
Signal Visibility 
Presence/Number of Left-Turn Lanes 
Horizontal Alignment (approaches) 
Approach Speed (observed) 
Approach Speed (design) 
Traffic Volumes 
Signal Phasing 
Signal Visibility 
Spacing between intersections and 
nearby driveways 
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The survey results show that all of the states surveyed can provide electronic crash 

databases and roadway segment inventory data. In addition, the databases can be linked 

electronically. On the other hand, access to intersection inventory data is currently not available 

for the State of Texas. Finally, access to georeferenced data is limited to the States of 

Washington and Texas. 

 Table 3.6 summarizes the length of multilane rural network, as reported by the survey 

participants. This table shows that the States of Illinois, Texas, and West Virginia have, as 

expected, a vast rural network. 

Table 3.6 Multilane Rural Highway Network 
State Miles 

Illinois 
Maryland 
Missouri 
Texas 
West Virginia 

11,474 
770 

1,019 
7,667 
36,000 

 

Chapter Summary 

 This chapter has summarized the characteristics of the survey carried out for this project. 

A limited survey was conducted to: a) determine whether the selected DOTs are currently using 

or developing statistical models to predict the safety performance of multilane rural highways; b) 

find out candidate input variables of interest by the survey participants; and c) determine the 

accessibility to various databases, such as crash data, geometric design information for segments 

and intersections, and traffic flows for segments, and major and minor approaches. 

 The survey results have shown that only two of the state agencies surveyed currently 

have a methodology for estimating the safety performance of multilane rural highways. Crash 

data and segment files could be made available by all study participants. However, other 
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databases, such as intersection databases or access to georeferenced data, were not always 

available. The next chapter documents the data collection activities carried out in this study. 
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CHAPTER IV 

Characteristics of Data Collected 

 

 This chapter describes the summary statistics for the data that have been used for 

developing the statistical models and AMFs as well as for the cross-validation study. The chapter 

is divided into five sections and each covers a state database that was assembled for this project: 

Texas, California, Minnesota, New York, and Washington.  

 

Texas Data 

The Texas data were used for developing statistical models and AMFs for rural multilane 

segments. For this dataset, five years of data were collected for this project. The data were 

obtained from the Department of Public Safety (DPS) and the Texas Department of 

Transportation (TxDOT). Three databases were merged together into one common database 

using SAS (SAS, 2002): Accident Database (DPS), Road Inventory Database (TxDOT), and the 

Texas Reference Marker (TRM) (TxDOT). These databases did not have a common linking 

variable and the research team had to create specific codes to link the databases together. 

 Table 4.1 shows the summary statistics of the rural multilane segments. The database 

only included segments that have not been modified during the study period and are greater than 

or equal to 0.1 mile in length. The network included 1,733 divided and 1,522 undivided 

segments for a total length equal to 1,749.53 and 848.29 miles, respectively. The minimum and 

maximum AADT values ranged from about 200 to 90,000 vehicles per day. Among the variables 

collected, they included lane and shoulder widths, median width, number of intersections located 

along the segment, and the number of horizontal curves on the segment. It should be pointed out 
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that in this table and all subsequent tables, the values in parentheses represent the standard 

deviation (SD).  

Table 4.1 Summary Statistics for the Rural Segments in Texas 

Variables Category Min. Max. Mean 
(SD) Total 

Undivided 
0.1 6.275 

0.55 
(0.67) 

830.5 
  Segment Length (Miles) 

Divided 
0.1 11.21 

1.01 
(1.21) 

1746 

Undivided 
402 24,800 

6,613.61 
(4010.01)   AADT (Vehicles/day) 

Divided 
158 89,264 

10,403.63 
(7809.61) 

Undivided 
9.75 16.5 

12.57 
(1.59)   Lane Width (ft) 

 
Divided 

9.5 16 
12.06 
(0.39) 

  Shoulder Width (Right + 
  Left) (ft)a 
 Undivided 

0 40 
9.96 

(8.02) 

  Right Shoulder Width (ft)b 
Divided 

0 24 
13.65 
(3.65) 

  Median Width (ft) 
 Divided 

1 240 
47.71 

(28.87) 

 

Undivided 
0 47 

2.33 
(2.62) 

3,493 
  Number of Intersections 

Divided 
0 11 

1.22 
(1.64) 

2,093 

Undivided 
0 16 

0.70 
(1.32) 

1,052   Number of Horizontal  
  Curves 

Divided 
0 13 

0.78 
(1.20) 

1,342 
a Sum of right and left shoulders in ft; b sum of right shoulder widths in ft 

Table 4.2 summarizes important crash data characteristics. During the study period, a 

total of 15,753 crashes occurred on the rural network, with about 28% occurring on undivided 

highways. In addition, single-vehicle crashes accounted for about two-thirds of all crashes. 
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Table 4.2 Summary Crash Statistics for Rural Segments in Texas (5 years)  
Crash 
Type Severity Undivided Divided Together 

  Min. Max. Mean 
(SD) Total Min. Max. Mean 

(SD) Total Min. Max. Mean 
(SD) Total 

Injury 0 19 
0.63 

(1.60)* 
942 0 20 

1.59 
(2.48) 

2,729 0 20 
1.14 

(2.17) 
3,671 Single-

vehicle 
  

Total 0 56 
1.71 

(3.80) 
2,559 0 54 

4.57 
(6.71) 

7,872 0 56 
3.24 

(5.73) 
10,431 

Injury 0 22 
0.40 

(1.11) 
605 0 22 

0.72 
(1.57) 

1,246 0 22 
0.57 

(1.38) 
1,851   Multi- 

  vehicle 
  

Total 0 41 
1.13 

(2.52) 
1,694 0 72 

2.11 
(4.55) 

3,628 0 72 
1.65 

(3.77) 
5,322 

Injury 0 39 
1.03 

(2.45) 
1,547 0 35 

2.31 
(3.52) 

3,975 0 39 
1.71 

(3.13) 
5,522 

  All 

Total 0 97 
2.84 

(5.69) 
4,253 0 108 

6.68 
(9.93) 

11,500 0 108 
4.89 

(8.45) 
15,753 

 

California Data 

 The California data were used for developing statistical models and AMFs for rural 

segments and intersections. Depending upon the observation, between three and ten years of data 

were collected. The data are obtained from the FHWA�s HSIS maintained by the University of 

North Carolina. Similar to the Texas database, the data were assembled into one common 

database using SAS (SAS, 2002).  

 Table 4.3 summarizes the key variable statistics for rural multilane segments. The 

segment network included 1,087 divided and 356 undivided segments for a total length equal to 

518.9 and 150.5 miles, respectively. The minimum and maximum AADT values ranged from 

about 1,300 to 61,000 vehicles per day. The variables collected include lane and shoulder widths, 

median width, and the number of intersections located along the segment.  
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Table 4.3 Summary Statistics for Rural Segments in California 

Variables Category Min. Max. Mean 
(SD) Total 

Undivided 
0.1 3.858 

0.42 
(0.43) 

150.5 
  Segment Length (Miles) 

Divided 
0.1 3.895 

0.48 
(0.51) 

518.9 

Undivided 
1,372 609,512 

9,312.41 
(8378.25)   AADT (Vehicles/day) 

Divided 
3,044.4 39,744 

12,280.76 
(8545.70) 

Undivided 
6 15 

11.99 
(0.61)   Lane Width (ft) 

Divided 
11 15 

12.02 
(0.27) 

  Shoulder Width (Right + 
  Left) (ft)a Undivided 

0 31 
10.94 
(5.59) 

  Right Shoulder Width (ft)b 
Divided 

0 19 
8.64 

(2.18) 
  Median Width (ft) 
 Divided 

5 99 
45.06 

(30.67) 

 

Undivided 
0 8 

0.34 
(0.87) 

120 
  Number of Intersections 

Divided 
0 9 

0.46 
(0.89) 

501 
a Sum of right and left shoulders in ft; b sum of right shoulder widths in ft 

 

 Tables 4.4 to 4.7 summarize the key statistics for the variables in the data for multilane 

rural intersections. The data contained 37 4-legged and 13 3-legged signalized intersections as 

well as 267 4-legged two-way stop-controlled (TWSC) and 403 3-legged stop-controlled 

intersections, respectively. 
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Table 4.4 Summary Statistics for Rural 4-Legged Signalized Intersections 
in California 

Variable Level Frequency Min. Max. Mean 
Semi-actuated 
multi-phase 

1 

Fully-actuated 
2 phase 1 

Traffic Control 

Fully-actuated 
multi-phase 

35 

Lighted 37 Light 
Condition No lighting 0 

Mastarm 36 Mainline 
Signal 
Mastarm 

No mastarm 1 

None 1 
Curbed 
median 

13 

Mainline Left-
Turn 

Painted 23 
Channelization 
provided 

17 
Mainline 
Right-Turn 

None 20 
Permitted 37 
Restricted 0 

Permitted Left-
Turn 

Prohibited 0 
Mastarm 31 Crossroad 

Signal 
Mastarm 

No mastarm 6 

None 19 
Curbed 
median 3 

Crossroad Left-
Turn 

Painted 15 
Channelization 
provided 

16 
Crossroad 
Right-Turn 

None 21 
2 30 Crossroad 

Number of 
Lanes 

>2 7 

Divided 32 Mainline 
Median Undivided 5 

 

Major Road 
AADT 

5,923 43,500 18,478 

Minor Road 
AADT 

 

101 18,000 3,689 
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Table 4.5 Summary Statistics for Rural 3-Legged Signalized Intersections 
in California 

Variable Level Frequency Min. Max. Mean 
Semi-actuated 
multi-phase 

3 
Traffic Control 

Fully-actuated 
multi-phase 10 

Lighted 13 Intersection 
Light Type No lighting 0 

Mastarm 13 Mainline 
Signal 
Mastarm 

No mastarm 0 

None 0 
Curbed 
median 

3 

Mainline Left-
Turn 

Painted 10 
Channelization 
provided 

8 
Mainline 
Right-Turn 

None 5 
Permitted 13 
Restricted 0 

Permitted Left-
Turn 

Prohibited 0 
Mastarm 7 Crossroad 

Signal 
Mastarm 

No mastarm 6 

None 4 
Curbed 
median 

1 

Crossroad Left-
Turn 

Painted 8 
Channelization 
provided 

7 
Crossroad 
Right-Turn 

None 6 
2 11 Crossroad 

Number of 
Lanes 

>2 2 

Divided 13 Mainline 
Median Undivided 0 

 

Major Road 
AADT 

2,792 31,550 18,270 

Minor Road 
AADT 

 

101 14,000 3,810 
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Table 4.6 Summary Statistics for Rural 4-Legged TWSC Intersections in California 
Variable Level Frequency Min. Max. Mean 

Lighted 85 Intersection 
Light Type No lighting 182 

None 80 
Curbed 
median 

56 

Painted 130 

Mainline Left-
Turn 

Raised bar 1 
Channelization 
provided 

86 
Mainline 
Right-Turn 

None 181 
Permitted 263 
Restricted 0 

Permitted Left-
Turn 

Prohibited 4 
None 264 
Curbed 
median 

0 

Crossroad Left-
Turn 

Painted 3 
Channelization 
provided 

36 
Crossroad 
Right-Turn 

None 231 
2 267 Crossroad 

Number of 
Lanes 

>2 0 

Divided 239 Mainline 
Median Undivided 28 

 

Major Road 
AADT 

2,295 78,300 15,058 

Minor Road 
AADT 

 

10 7,400 429 
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Table 4.7 Summary Statistics for Rural 3-Legged SC Intersections in California 
Variable Level Frequency Min. Max. Mean 

Lighted 89 Intersection 
Light Type No lighting 314 

None 160 
Curbed 
median 

56 

Painted 186 

Mainline Left-
Turn 

Raised bar 1 
Channelization 
provided 

76 
Mainline 
Right-Turn 

None 327 
Permitted 387 
Restricted 0 

Permitted Left-
Turn 

Prohibited 16 
None 401 
Curbed 
median 

1 

Crossroad Left-
Turn 

Painted 1 
Channelization 
provided 

27 
Crossroad 
Right-Turn 

None 376 
2 400 Crossroad 

Number of 
Lanes 

>2 3 

Divided 345 Mainline 
Median Undivided 58 

 

Major Road 
AADT 

2,430 78,300 17,339 

Minor Road 
AADT 

 

10 23,111 447 

 

Table 4.8 summarizes important data characteristics for crashes occurring on segments in 

California. During the study period, a total of 2,267 crashes occurred on rural multilane highway 

segments, with about 17% occurring on undivided highways. In addition, single-vehicle crashes 

accounted for about two-thirds of all crashes happening on the network included in the database. 
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Table 4.8 Summary Statistics for the Crash Data (per Year) on Segments 
in California (Segment Models) 

Crash 
Type Severity                Undivided                     Divided                  Together  

    Min. Max. Mean 
(SD) Total Min. Max. Mean 

(SD) Total Min. Max. Mean 
(SD) Total 

Injury 0 3.6 
0.20 

(0.36) 
 695 0 11 

0.29 
(0.62) 

3,100 
 

0 11 
0.27 

(0.57) 
3,795 

 
Single-
vehicle 
  

Total 0 10.9 
0.61 

(1.09) 
2,175 0 53.7 

0.93 
(2.35) 

9,999 
 

0 53.7 
0.85 

(2.11) 
12,174 

 

Injury 0 3.1 
0.10 

(0.26) 
 364 
 

0 3.8 
0.14 

(0.30) 
1,487 

 
0 3.8 

0.13 
(0.29) 

1,851 
 

  Multi- 
  vehicle 
  

Total 0 14.2 
0.48 

(1.28) 
1,718 

 
0 65.5 

0.80 
(2.74) 

8,615 
 

0 65.5 
0.72 

(2.46) 
10,333 
 

Injury 0 4.5 
0.30 

(0.55) 
1,059 
 0 14.8 

0.43 
(0.86) 

4687 
 0 14.8 

0.39 
(0.80) 

5,646 
 

  All 

Total 0 21.7 
1.09 

(2.21) 
3,893 

 
0 119.2 

1.73 
(4.95) 

18,614 
 

0 119 
1.57 

(4.44) 
22,507 

 
 

Table 4.9 summarizes important crash data characteristics for intersections for the 

California data. During the study period, 1,298 and 379 crashes occurred at 4-legged and 3-

legged signalized intersections. For unsignalized intersections, 2,881 and 4,484 crashes happened 

at 4-legged and 3-legged locations, respectively. 
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Table 4.9 Summary Statistics for Crash Data (per Year) at Intersections in California 
(Intersection Models) 

Crash Type Severity                                              Crashes 

   Min. Max. Mean 
(SD) Total 

Injury 0.0 2 
0.88 

(0.62) 
240 Rural 4-Legged 

Signalized 
Intersections Total 0.2 15.3 

5.03 
(3.53) 

1,298 

Injury 0.0 0.9 
0.30 

(0.28) 
37 Rural 3-Legged 

Signalized 
Intersections Total 0.4 7.9 

3.22 
(2.21) 

379 

Injury 0.0 2.2 
0.32 

(0.44) 
839 

Rural 4-Legged 
TWSC Intersections 

Total 0.0 12.8 
1.10 

(1.47) 
2,881 

Injury 0.0 13.9 
1.14 

(0.41) 
994 

Rural 3-Legged SC 
Intersections 

Total 0.0 2.7 
0.26 

(1.83) 
4,484 

 

Tables 4.10 and 4.11 summarize the input crash data for the models by crash type. The 

data described in Table 4.10 were used for the models estimated using intersection data, while 

the data described in Table 4.11 were employed for the model development for segments.
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Table 4.10 Summary Statistics for Crash Data (per Year) for Intersections in California 
(Crash Type Models) 

Crash Type Severity 3-Legged Stop-Controlled 4-Legged Stop-Controlled Together 

    Min. Max. Mean 
(SD) Total Min. Max. Mean 

(SD) Total Min. Max. Mean 
(SD) Total 

Injury 0 0.9 
0.06 

(0.12) 
272 0 0.8 

0.05 
(0.10) 

418 0 0.9 
0.05 

(0.11) 
690 

Same direction 
Total 0 7.8 

0.44 
(0.90) 

1,641 0 5.0 
0.30 

(0.59) 
796 0 7.8 

0.39 
(0.79) 

2,437 

Injury 0 1.5 
0.05 

(0.14) 178 0 1.1 
0.06 

(0.14) 164 0 1.5 
0.05 

(0.14) 342 
Opposite direction 

Total 0 2.9 
0.14 

(0.34) 
530 0 2.3 

0.16 
(0.33) 

410 0 2.9 
0.15 

(0.33) 
940 

Injury 0 2.0 
0.08 

(0.19) 
272 0 1.5 

0.16 
(0.28) 

418 0 2.0 
0.11 

(0.24) 
690 Intersecting 

direction 
Total 0 3.9 

0.24 
(0.47) 

875 0 3.7 
0.43 

(0.66) 
1,085 0 3.9 

0.32 
(0.56) 

1,960 

Injury 0 0.9 
0.05 

(0.11) 
201 0 0.6 

0.05 
(0.09) 

128 0 0.9 
0.05 

(0.11) 
329 

Single vehicle 
Total 0 4.7 

0.24 
(0.43) 

869 0 2.3 
0.21 

(0.29) 
547 0 4.7 

0.23 
(0.38) 

1,416 
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Table 4.11 Summary Statistics for Crash Data (per Year) on Segments in California 
 (Crash Type Models) 

Crash Type Severity Undivided  Divided Together 

    Min. Max. Mean 
(SD) Total Min. Max. Mean 

(SD) Total Min. Max. Mean 
(SD) Total 

Injury 0 0.7 
0.02 

(0.06) 
59 0 0.5 

0.02 
(0.06) 

168 0 0.7 
0.02 

(0.06) 
227 Crashes at minor 

intersections  
Total 0 3.5 

0.09 
(0.24) 

300 0 2 
0.09 

(0.20) 
634 0 3.5 

0.09 
(0.21) 

934 

Injury 0 3.3 
0.16 

(0.32) 503 0 5.6 
0.25 

(0.45) 1,875 0 5.6 
0.22 

(0.42) 2,378 Single-vehicle and 
Opposite direction 
without turning Total 0 8.1 

0.43 
(0.75) 

1,392 0 14 
0.72 

(1.24) 
5,395 0 14 

0.64 
(1.13) 

6,787 

Injury 0 0.5 
0.03 

(0.06) 
81 0 2.6 

0.06 
(0.17) 

471 0 2.6 
0.05 

(0.15) 
552 Same direction 

without turn 
Total 0 3.8 

0.14 
(0.31) 

448 0 10.6 
0.38 

(0.92) 
2,786 0 10.6 

0.30 
(0.79) 

3,234 
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Minnesota Data 

The Minnesota data were used for developing statistical models and AMFs for rural 

intersections. Up to ten years of data were collected for each site. The data were obtained from 

HSIS. Similar to the previous state databases, the data were assembled into one common 

database using SAS (SAS, 2002).  

 Tables 4.12 to 4.15 summarize the statistics of the data used for intersection models. The 

data contained 43 4-legged intersections, eight 3-legged signalized intersections, 224 

unsignalized 4-legged intersections, and 171 3-legged unsignalized intersections. There were 

insufficient sites to calibrate a reliable model for 3-legged signalized intersections. However, 

data for this intersection type are shown in Table 4.13 for completeness. 

Table 4.12 Summary Statistics for Rural 4-Legged Signalized Intersections  
in Minnesota 

Variable Level Frequency Min. Max. Mean 
Lighted 39 Intersection 

Light Type No lighting 4 
2 35 
4 8 

Crossroad 
Number of 
Lanes Unknown 0 

 

Major Posted 
Speed 

30 65 58 

Minor Posted 
Speed 

30 55 49 

Major Road 
AADT 6,445 37,800 21,351 

Minor Road 
AADT 

 

337 18,489 5,137 
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Table 4.13 Summary Statistics for Rural 3-Legged Signalized Intersections 
in Minnesota 

Variable Level Frequency Min. Max. Mean 
Lighted 8 Intersection 

Light Type No lighting 0 
2 7 
4 1 

Crossroad 
Number of 
Lanes Unknown 0 

 

Major Posted 
Speed 

55 60 57.5 

Minor Posted 
Speed 

25 55 45.0 

Major Road 
AADT 

10,770 38,963 23,591 

Minor Road 
AADT 

 

695 26,128 9,181 

 

Table 4.14 Summary Statistics for Rural 4-Legged TWSC Intersections 
 in Minnesota 

Variable Level Frequency Min. Max. Mean 
Lighted 33 Intersection 

Light Type No lighting 191 
2 218 
4 3 

Crossroad 
Number of 
Lanes Unknown 3 

 

Major Posted 
Speed 

30 65 59 

Minor Posted 
Speed 

30 55 50 

Major Road 
AADT 

903 34,082 11,379 

Minor Road 
AADT 

 

14 5,209 743 

 

Table 4.15 Summary Statistics for Rural 3-Legged SC Intersections in Minnesota 
Variable Level Frequency Min. Max. Mean 

Lighted 31 Intersection 
Light Type No lighting 140 

2 159 
4 5 

Crossroad 
Number of 
Lanes Unknown 7 

 

Major Posted 
Speed 

40 65 59 

Minor Posted 
Speed 

15 65 48 

Major Road 
AADT 

1,503 41,013 13,070 

Minor Road 
AADT 

 

11 5,287 795 
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Table 4.16 summarizes important crash data characteristics for intersections for the 

Minnesota data. During the study period, 2,024 and 475 crashes occurred at 4-legged and 

3-legged intersections, respectively. For unsignalized intersections, 3,184 and 1,190 crashes 

happened at 4-legged and 3-legged locations, respectively. 

Table 4.16 Summary Statistics for Crash Data (per Year) at Intersections in Minnesota 
Crash Type Severity Crashes 

  Min. Max. Mean 
(SD) Total 

Injury 0.0 8.0 
2.2 

(2.01) 
314 Rural 4-Legged 

Signalized 
Intersections Total 0.0 30.0 

13.2 
(8.14) 

2,024 

Injury 0.0 3.5 
0.9 

(1.24) 
65   Rural 3-Legged  

  Signalized  
  Intersections Total 1.3 13.8 

8.3 
(4.12) 

475 

Injury 0.0 7.0 
0.7 

(1.05) 
974 

  Rural 4-Legged  
  TWSC Intersections

Total 0.0 19.6 
2.4 

(3.32) 
3,184 

Injury 0.0 2.4 
0.3 

(0.53) 
299 

  Rural 3-Legged SC  
  Intersections 

Total 0.0 5.4 
1.2 

(1.34) 
1,190 

 

New York Data 

 The New York data were used for evaluating the re-calibration procedure for rural 

segments and intersections. Seven years of data were collected. The data were obtained from the 

NY State DOT. The data were assembled into one common database using SAS (SAS, 2002). 

Table 4.17 summarizes the statistics of the data used for segment models.  
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Table 4.17 Summary Statistics for Rural Segments in New York 

Variables Category Min. Max. Mean 
(SD) Total 

Undivided 0.1 3.84 
0.43 

(0.54) 
85.38 

  Segment Length (Miles) 
Divided 0.1 4.96 

0.87 
(0.93) 

138.79 

Undivided 271.3 18,889.7 
7,477.92 

(4,738.57)   ADT (Vehicles/day) 
Divided 1,082 46,717.4 

10,287.86 
(7,034.76) 

Undivided 9 17.5 
11.73 
(1.47)   Lane Width (ft) 

 
Divided 10 19 

12.25 
(1.40) 

Undivided 0 12 
4.45 

(3.87) 
  Shoulder Width (ft) 
  
 Divided 0 14 

7.06 
(4.00) 

  Median Width (ft) 
 Divided 0 9 

3.04 
(2.12) 

 

Undivided 0 14 
1.72 

(1.83) 
339 

  Number of Intersections 
Divided 0 11 

1.86 
(1.89) 

296 

 

The data contained 159 undivided and 197 divided highway segments, respectively. The 

data collected included lane and shoulder widths, median width, and the number of intersections 

located on segments.  

 Table 4.18 shows the important crash data characteristics for rural highways in New 

York. A total of 2,031 and 2,800 crashes occurred on undivided and divided segments, 

respectively. 
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Table 4.18 Summary Statistics for Crash Data on Rural Segments in New York 
Crash 
Type Severity Undivided Divided Together 

  Min. Max. Mean 
(SD) Total Min. Max. Mean 

(SD) Total Min. Max. Mean 
(SD) Total 

Injury 0 28 
1.72 

(3.35) 
339 0 32 

3.01 
(3.84) 

479 0 32 
2.30 

(3.63) 
818 Single-

vehicle 
 Total 0 87 

4.40 
(8.58) 

867 0 72 
10.49 

(11.86) 
1,668 0 87 

7.12 
(10.61) 

2,535 

Injury 0 32 
3.21 

(5.28) 
633 0 35 

4.14 
(6.18) 

658 0 35 
3.63 

(5.71) 
1,291   Multi- 

  vehicle 
 Total 0 55 

5.91 
(9.71) 

1,164 0 71 
7.12 

(10.25) 
1,132 0 71 

6.45 
(9.96) 

2,296 

Injury 0 60 
4.93 

(7.62) 
972 0 66 

7.15 
(8.30) 

1,137 0 66 
5.92 

(8.00) 
2,109 

  All 
Total 0 142 

10.31 
(15.77) 

2,031 0 116 
17.61 

(18.05) 
2,800 0 142 

13.57 
(17.19) 

4,831 

 

Tables 4.19 and 4.20 summarize the statistics of the data used for intersection models. 

Only sufficient data for unsignalized intersections was available. The data contained 71 4-legged 

signalized intersections and 282 3-legged signalized intersections. 

Table 4.19 Summary Statistics for Rural 4-Legged Signalized Intersections in New York 
Variable Level Frequency Min. Max. Mean 

Yes 3 Presence of 
left-turn lane No 68 

Flat 47 
Rolling 21 Terrain 
Hilly 3 

 

Major Road 
AADT 

1,552 23,116 8,597 

Minor Road 
AADT 

 

155 3,778 911 
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Table 4.20 Summary Statistics for Rural 3-Legged Signalized Intersections in New York 
Variable Level Frequency Min. Max. Mean 

Yes 9 Presence of 
left-turn lane No 272 

Flat 176 
Rolling 95 Terrain 
Hilly 10 

 

Major Road 
AADT 

271 20,320 8,566 

Minor Road 
AADT 

 

14 1,889 477 

 

Table 4.21 summarizes important crash data characteristics for intersections for the 

Minnesota data. During the study period, 472 and 673 crashes occurred at 4-legged and 3-legged 

intersections, respectively. 

Table 4.21 Summary Statistics for Crash Data (per Year) at Intersections in New York  
Crash Type Severity                                              Crashes 

   Min. Max. Mean 
(SD) Total 

Injury 0.00 1.33 
0.18 

(0.24) 117 Rural 4-Legged 
Signalized 
Intersections Total 0.00 3.44 

0.74 
(0.82) 

472 

Injury 0.00 0.56 
0.05 

(0.10) 
127   Rural 3-Legged 

  Signalized  
  Intersections Total 0.00 3.11 

0.27 
(0.41) 

673 

 

Washington Data 

 The Washington data were used for developing statistical models for rural segments. 

Four years of data were collected for this dataset. The data were obtained from the HSIS. The 

data were assembled into one common database using SAS (SAS, 2002).  

 Table 4.22 summarizes the statistics of the data used for segment models. The data 

contained 476 and 35 divided and undivided segments, respectively. The ADT varied from about 

4,000 vehicles per day to 61,947 vehicles per day. The variables collected included lane and 

shoulder widths, median width, and the number of horizontal curves. 



 

 48

Table 4.22 Summary Statistics for Rural Segments in Washington 

Variables Category Min. Max. Mean 
(SD) Total 

Undivided 0.1 0.49 
0.19 

(0.11) 
6.67 

  Segment Length (Miles) 
Divided 0.1 2.76 

0.41 
(0.42) 

195.55 

Undivided 4,014 33,118 
17,539.23 
(8161.07)   ADT (Vehicles/day) 

Divided 3,187 61,947 
15,625.86 

(10,271.42) 

Undivided 11 17 
12.97 
(1.32)   Lane Width (ft) 

 
Divided 11 17 

12.13 
(0.68) 

  Shoulder Width  
  (Right + Left) (ft)a 
 

Undivided 0 27 
6.80 

(8.51) 

  Right Shoulder Width (ft)b 
 

Divided 0 25 
9.53 

(1.89) 
  Median Width (ft) 
 

Divided 4 620 
67.06 

(73.46) 

 

Undivided 0 2 
0.49 

(0.56) 
17 

  Number of Intersections 
Divided 0 2 

0.22 
(0.42) 107 

Undivided 0 2 
0.23 

(0.55) 
8 Number of Horizontal 

Curves 
Divided 0 13 

0.83 
(1.04) 

393 
a Sum of right and left shoulders in ft; b sum of right shoulder widths in ft 

 

Table 4.23 summarizes important crash data characteristics about segments for the 

Washington data. During the four-year study period, a total of 2,416 crashes occurred on rural 

segments, with only 5% occurring on undivided highways. In addition, single-vehicle crashes 

accounted for about two-thirds of all crashes happening on the network. 
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Table 4.23 Summary Statistics for Crash Data on Segments in Washington 
 (Segment Models) 

Crash 
Type Severity Undivided Divided Together 

  Min. Max. Mean 
(SD) Total Min. Max. Mean 

(SD) Total Min. Max. Mean 
(SD) Total 

Injury 0 3 
0.20 

(0.63) 
7 0 9 

0.87 
(1.48) 

415 0 9 
0.83 

(1.45) 
422 Single-

vehicle 
 Total 0 10 

1.09 
(2.03) 

38 0 46 
3.61 

(4.95) 
1,716 0 46 

3.43 
(4.85) 

1,754 

Injury 0 3 
0.29 

(0.62) 
10 0 5 

0.28 
(0.65) 

131 0 5 
0.28 

(0.65) 
141   Multi- 

  vehicle 
 Total 0 35 

2.74 
(5.84) 

96 0 19 
1.19 

(2.21) 
566 0 35 

1.30 
(2.65) 

662 

Injury 0 3 
0.49 

(0.82) 17 0 12 
1.15 

(1.74) 546 0 12 
1.10 

(1.70) 563 
  All 

Total 0 36 
3.83 

(6.35) 
134 0 62 

4.79 
(6.06) 

2,282 0 62 
4.73 

(6.08) 
2,416 

 

Chapter Summary 

 This chapter described the summary statistics for the data collected for developing 

statistical models and AMFs for intersections and segments as well as for evaluating the re-

calibration procedure. The models estimated in this research used five state databases: Texas, 

California, Minnesota, New York, and Washington. The data included detailed information 

about geometric design characteristics, traffic flow, and motor vehicle crashes. The next chapter 

describes the methodology used for developing the models and AMFs. 



 

 50

CHAPTER V 

Modeling and Accident Prediction Methodologies 

 

This chapter describes the characteristics of the model development and modeling 

methodologies. The chapter is divided into five sections. The first section describes the accident 

prediction methodology. The second section provides details about the model classes and 

functions. The third section covers the modeling framework for developing statistical models. 

The fourth explains the characteristics of the models developed in this work. The last section 

describes the methods used for estimating AMFs.  

 

Accident Prediction Methodology 

 The models presented in this document estimate the safety performance of existing and 

proposed multilane rural highways operating under current and projected traffic demand. The 

models apply to four-lane undivided and divided rural highways. The safety performance 

measure is the expected annual crash frequency by severity, which can be calculated for a 

particular segment, intersection, or an entire project when both are combined.  

 As described in Chapter I, the term rural in this project is defined using the 

guidelines proposed by AASHTO (2004). These guidelines classify rural areas as places outside 

the boundaries of urban places where the population is less than 5,000 inhabitants. Consequently, 

any highway located outside the city limits of an urban agglomeration above 5,000 inhabitants is 

considered rural. The boundary delimitating rural and urban areas can at times be difficult to 

determine, especially since most multilane rural highways are located on the outskirts of urban 

agglomerations. In any case, these procedures may be used for any multilane (defined in the next 
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paragraph) road in which the general design features and land use setting are rural rather than 

urban or suburban in nature. In other words, if the road is designed according to the rural road 

design standards in the AASHTO (2004) �Green Book,� and development along the road is 

relatively sparse, these procedures apply.  

 The term multilane refers to facilities with four through lanes. These facilities may be 

divided with a rigid (concrete) or flexible barrier (cable), paved or landscaped median, but 

should not have access and egress limited by grade-separated interchanges (i.e., not freeways). 

Facilities may have occasional grade-separated interchanges, but these should not be the primary 

form of access and egress, and these procedures do not apply to the sections passing through the 

interchanges. 

 Separate models were estimated for intersections and segments and for sections that 

comprise both segments and intersections. The model classes are described in more detail in the 

next section. For segments, models were estimated for different types of multilane highways 

classified according to median type (i.e., divided and undivided facilities). For intersections, 

there are different models for 3- and 4-legged intersections, and for stop- and signal-controlled 

intersections. Crashes that have already been defined as intersection or intersection-related in the 

accident report and that occurred within 250 ft (76 m) of the intersection center were assigned to 

the intersection. For cases where no such definitions are available, all crashes occurring within 

250 ft from the middle of the intersection were assigned to that intersection. The models estimate 

expected crash frequencies by crash type and severity to aid in the identification of safety 

concerns at existing locations or for a planned scenario.  

In this work, major intersections are intersections between the highway segment being 

analyzed and other primary roads, such as major and minor arterials, or major collectors, and 
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where traffic volumes (ADT) are available on all approaches. The latter requirement is extremely 

important, as the application of the intersection procedures requires ADT on all intersection 

approaches. 

All other intersections are then referred to as minor intersections. These are generally 

intersections between the facility being analyzed and minor collectors, local roads, access 

driveways, or any intersection for which traffic volumes (ADT) are not available on approaches 

intersecting the facility being analyzed (it is assumed that ADT is available for the facility being 

analyzed). 

Finally, segments are defined as portions of the facility delimited by major intersections 

or significant changes in the roadway cross-section, geometric characteristics of the facility, or 

the surrounding land uses. Roadway segments can be either undivided or divided.  

Crashes are assigned to either a major or minor intersection, or a segment. Crashes 

occurring within or near the intersection are assigned to the intersection, and all other crashes are 

assigned to the respective segment. It is recommended that the following two criteria be used to 

define intersection and intersection-related crashes. In the first criterion, crashes that have 

already been defined as intersection or intersection-related in the accident report and that 

occurred within 250 ft (76 m) of the intersection center are assigned to the intersection. For cases 

where crashes are not identified as intersection or intersection-related, all crashes occurring 

within 250 ft from the middle of the intersection are assigned to that intersection. Figure 5.1 

illustrates the key transportation elements of the predictive methodology. 

 

 

 



 

 53

 

Segment Length

Intersection Crashes

Segment Crashes

Minor IntersectionsMajor Intersection Major Intersection

 

Figure 5.1 Definition of Segments and Intersections 

 

Table 5.1 provides an overview of the key transportation elements of multilane rural 

highways for which specific procedures are used for estimating the models. 

Table 5.1 Transportation Elements Included for the Model Development 
Segment Type Intersection Type 

Undivided segments Signalized 4-legged 
Signalized 3-legged 

Unsignalized 4-legged 
Unsignalized 3-legged 

Divided segments Signalized 4-legged 
Signalized 3-legged 

Unsignalized 4-legged 
Unsignalized 3-legged 

 

Model Classes and Functions 

This section describes the three classes of models that were estimated in this work. The 

three model classes are baseline models, general Average Daily Traffic (ADT) models, and 

models with covariates. For this study, AADT values are used as estimates of the ADT to be 

consistent with other sections of the HSM.  
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Baseline Models 

For the first model class, statistical models are developed using a given set of baseline 

conditions. The baseline conditions usually reflect the nominal conditions agencies most often 

used for designing segments and intersections. For instance, nominal baseline conditions for 

segments may include paved 12-ft lane and 8-ft shoulder widths. For intersections, nominal 

conditions may include 12-ft lanes and no turning lanes on all approaches. Detailed 

characteristics for the nominal conditions for each model are described in the next chapter. 

Baseline models are currently part of the methodology for estimating the safety performance of 

rural two-lane highways (HSM Chapter 8) and urban and suburban arterial (HSM Chapter 10).  

With these types of models, changes in geometric design characteristics are estimated 

using AMFs. The output of the models is adjusted by multiplying it with the modification 

factors. Additional details about AMFs can be found later in the chapter. 

The functional forms used for estimating the baseline models for intersections are the 

following: 

1 2
0 1 2it it itF Fβ βµ β=         (5.1a) 

1
0it TitF βµ β=          (5.1b) 

Where, 

 itµ  = mean number of crashes for intersection i  and year t ; 

 1itF  = entering traffic flows in vehicles per day (ADT) on the major approaches 

for intersection i  and year t ; 

 2itF  = entering traffic flows in vehicles per day (ADT) on the minor approaches 

for intersection i  and year t ; 
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TitF  = entering traffic flows in vehicles per day (ADT) on the major and minor 

approaches ( 21 FFFT += ) for intersection i  and year t ; and 

0β , 1β , 2β  = coefficients estimated from data. 

 

The functional form used for estimating the baseline models for segments is the 

following: 

1
0it i SitL F βµ β=          (5.2) 

Where, 

 itµ  = mean number of crashes per year for segment i  and year t ; 

 iL  = segment length in miles for site i ; 

 SitF  = traffic flow in vehicles per day (ADT) for segment i  and year t ; and 

0β , 1β  = coefficients estimated from data. 

 It is important to note that an important limitation associated with this model class is 

related to the sample size. When baseline conditions are precisely defined, the sample size can be 

significantly reduced. In return, a small sample size can affect the robustness and statistical 

power of the model. In some circumstances, the model may become biased, particularly when 

the sample mean value is very low (Lord, 2006). 

 

General ADT Models 

 For the second model class, general ADT models are developed for the following 

transportation elements: 4-lane undivided segments, 3- and 4-legged signalized intersections, as 

well as 3- and 4-legged unsignalized intersections. These models therefore reflect the average 
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conditions found in the data for each transportation element. The data were described in Chapter 

IV. These models can be used for cases where the user has limited information about the 

geometric design features for the particular project under study. They can still be useful and 

provide an average value for the safety performance of multilane rural segments and rural 

intersections. 

 For this model class, AMFs can be used to adjust for changes in geometric design 

features. However, the AMFs need to be re-calibrated or adjusted to reflect the average 

conditions found in the data.  

Similar to baseline models, the functional forms used for estimating the general ADT 

models for intersections are the following: 

1 2
0 1 2it it itF Fβ βµ β=         (5.3a) 

1
0it TitF βµ β=          (5.3b) 

Where, 

 itµ  = mean number of crashes for intersection i  and year t ; 

 1itF  = entering traffic flows in vehicles per day (ADT) on the major approaches 

for intersection i  and year t ; 

 2itF  = entering traffic flows in vehicles per day (ADT) on the minor approaches 

for intersection i  and year t ; 

TitF  = entering traffic flows in vehicles per day (ADT) on the major and minor 

approaches ( 21 FFFT += ) for intersection i  and year t ; and 

0β , 1β , 2β  = coefficients estimated from data. 
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The functional form used for estimating the general ADT models for segments is the 

following: 

1
0 Sitit iL F βµ β=          (5.4) 

Where, 

 itµ  = mean number of crashes per year for segment i  and year t ; 

 iL  = segment length in miles for site i ; 

 SitF  = traffic flow in vehicles per day (ADT) for segment i  and year t ; and 

0β , 1β  = coefficients estimated from data. 

 

Models with Covariates 

 The third model class is the model with covariates. For this model class, the relationship 

between crashes and geometric design features is captured via the covariates in the statistical 

model.  The selection of the covariates to be included into the model can be governed by various 

statistical criteria, such as the statistical significance of each variable and Akaike Information 

Criterion (AIC). This model class does not require the use of AMFs. 

 The functional form used for estimating the models with covariates for intersections is 

the following: 

31 2
0 1 2

n

k itk
k

x

it it itF F e
β

β βµ β =
∑

=         (5.5) 

Where, 

 itµ  = mean number of crashes for site i  and year t ; 

 1itF  = entering traffic flows in vehicles per day (ADT) on the major approaches 

for site i  and year t ; 
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 2itF  = entering traffic flows in vehicles per day (ADT) on the minor approaches 

for site i  and year t ; 

 itkx  = model covariates (e.g., right-turning lanes, lighting, etc.) for site i  and year t ; and 

0β , 1β , 2β , kβ  = coefficients estimated from data. 

The functional form used for estimating the models with covariates for segments is the 

following: 

21
0

n

k itk
k

Lit

x

it iL F e
β

βµ β =
∑

=         (5.6) 

Where, 

 itµ  = mean number of crashes per year for site i  and year t ; 

 iL  = segment length in miles for site i ; 

 LitF  = traffic flow in vehicles per day (ADT) for site i  and year t ;  

 itkx  = model covariates (e.g., lane width, shoulder width, etc.) for site i  and year t ; and 

0β , 1β , kβ  = coefficients estimated from data. 

 In this work, the research team has explored the development of multivariate crash count 

models by severity (Song et al., 2006; Miaou and Song, 2005; Ma and Kockelman, 2006; Park 

and Lord, 2007). Since these models are currently in the exploratory stages, they will not be part 

of the proposed HSM predictive methodology for Chapter 9. The multivariate model was applied 

to only one dataset (i.e., 3-legged signalized intersections) and the modeling results are 

summarized in Appendix E.  

 This new type of model uses the same functional form as the one depicted in Equation 

5.6. However, the models include multivariate variables or covariates (i.e., each variable is a 

vector) instead of univariate variables, as traditionally used in highway safety analysis (e.g., Eqs. 
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5.5 and 5.6). In multivariate models, the different levels of the variables are assumed to be 

dependent. Ignoring this dependence may lead to inclusion or exclusion of key covariates that 

have detrimental effects on the model (Park and Lord, 2007). An example of the functional form 

for this model type is the following: 

1 2 3
0 1 2

n

jk ijtk
j j k

x

ijt j ijt ijtF F e
β

β βµ β =
∑

=        (5.7) 

Where, 

 ijtµ  = mean number of crashes for site i , severity j , and year t ; 

 1itF  = entering traffic flows in vehicles per day (ADT) on the major approaches 

for site i , severity j , and year t ; 

 2itF  = entering traffic flows in vehicles per day (ADT) on the minor approaches 

for site i , severity j , and year t ; 

 ijtkx  = model covariates (e.g., right-turning lanes, lighting, etc.) site i  and severity j , and  

  and year t ; and 

0jβ , 1jβ , 2jβ , jkβ  = coefficients estimated from data. 

 

Modeling Framework 

 This section describes the characteristics associated with the development of statistical 

models performed in this work. The development of statistical models was divided into four 

major steps: (1) determine the modeling objective matrix; (2) establish the appropriate processes 

to develop the models; (3) determine the inferential goals; and (4) select the computation 

techniques and tools. 
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Determine Modeling Objective Matrix 

 The first step in developing predictive or statistical models is to lay out the objectives of 

the modeling effort. The main considerations in this step include application needs, project 

requirements, data availability, logical scales�both spatial and temporal scales�of modeling 

units and their definitions, and range, definition, and unit of key input and output variables.  

 Table 5.2 shows a modeling objective matrix that was used for this project. The first 

column provides a list of physical elements on the network that are typically used in modeling 

and possible types and levels of aggregations in the applications. The first row lists crash 

outcome parameters from the predictive models that are potentially of interest to the users. 

Table 5.2 Modeling Objective Matrix 

Network 
Elements 

Crash 
Frequency 

Crash 
Rate 

Crash Injury 
Severity 

(KABCO) 

Crash 
Typea AMFsb Crash 

Cost 

• Intersections Yc Y T Y Y N 
• Segments Y Y N Y Y N 

a Single vehicle: Single vehicle run-off-road (SVROR) and single vehicle main lanes; Multiple vehicles: Head-on, 
rear-end, sideswipe, angled, etc. 
b AMFs can be developed for different crash types and severities. 
c Y = was performed for this project; T = tried for this project; N = was not be attempted for this project; in some 
cases, it was initially proposed, but was eventually not used in this study. 
Note: This table represents a simplification of the modeling objective. 
 

It is critically important in this step to determine logical scales of modeling units and 

their definitions, as well as range, unit, and definition of key input and output variables. For 

instance, it is important to have a spatial and physical definition of intersections and segments 

and the exact types of traffic crashes (e.g., intersection, intersection-related, pedestrian-involved, 

or animal-involved crashes) to be assigned to each observational unit or observation.  The range 

of traffic flows can be used as another example. There is a need to determine the range of flows 

and geometric characteristics of interest to this study (e.g., ADT = 200 to 20,000) and make sure 

commensurable data can be obtained.  The time unit of analysis (i.e., number of crashes per unit 
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of time) is another critical element when developing statistical models. Whether one uses crashes 

per month, per year, per 3-year, etc., will have serious effects on modeling assumptions and 

consequently on model interpretation and applicability. Not properly defining the modeling 

scales could lead to datasets with too many zeros or too much variation. This may cause 

problems with the development of statistical models, as documented by Lord et al. (2005b) and 

Lord (2006). 

 

Establish Appropriate Process to Develop Models  

This step is to make sure that the best possible statistical models are developed to achieve 

the modeling objectives identified in the last step.  This includes ensuring that: a) data sources 

and limitations, sampling design, and statistical, functional, and logical assumptions are clearly 

spelled out; b) supporting theories are properly defended and/or cited; c) models are 

systematically developed and tested; and d) modeling results are properly interpreted.   

 Typical modeling procedures employed in developing statistical models can be grouped 

into five major processes: (1) establish a sampling model; (2) choose an observational model; (3) 

develop a process/state/system model; (4) develop a parameter model (for the Bayesian approach 

only); and (5) construct model choice and interrogation methods, including model comparison, 

sensitivity or robustness analysis, and specification test among others. 

 

Process #1: Sampling Model 

 The first process in developing a predictive model is to establish a sampling model, 

through which the sampling design used in collecting sampling units is statistically 

characterized. Typical sampling methods include simple random sampling, systematic sampling, 
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cluster sampling, stratified sampling, and other variants or combinations of these sampling 

methods. This sampling model allows the analyst to recognize: (1) the population or 

subpopulations that the model is intended to represent, (2) potential sampling or selection bias 

that may exist in the collected data which needs to be corrected in the model, and (3) sampling 

properties (e.g., correlation due to geographical clustering) that need to be considered in the 

subsequent modeling processes.   

 

Process #2: Observational Model 

 This process determines the probability model for an individual site if repeated 

observations can be made under the same conditions, i.e., with conditions frozen in space and 

time. For modeling crash frequency, the Poisson model and its variants (i.e., Poisson-gamma and 

Poisson-lognormal, etc.) are the time-honored observational model for modeling rare and 

discrete events that often exhibit highly skewed distribution in their occurrence. The mixed-

Poisson model is well accepted in the traffic safety community, as well as many other scientific 

and engineering disciplines. When modeling injury severity distribution, logistic, multinomial 

probit, ordered multinomial probit, multinomial logit, and ordered multinomial logit models are 

commonly employed, each of which has an underlying distributional assumption regarding the 

distribution of crashes by severity.   

 Another important issue to consider is to determine whether to choose a series of 

conditionally independent univariate models or a multivariate model to predict crashes by, e.g., 

crash types or crash injury severity level, as described below.  Quite a few models have been 

employed in the literature and to the best of the research team�s knowledge, no systematic 

evaluation of their underlying assumptions and model performance has been reported at this 
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point. For example, in modeling crashes by severity level, some used separate Poisson-based 

models for crashes of different severity levels, e.g., one for total crashes or all crash severities, 

one for KAB (i.e., Fatal Injury, Injury Type A, and Injury Type B) or KABC (all injuries, 

including Type C) crashes, and one for property damage only (PDO or O) crashes. Others used 

the mixed-Poisson model for total crashes and then separately developed a (possibly ordered) 

logit-based model for characterizing severity distributions. Some, in recent years, have begun to 

model crashes by severity simultaneously with multivariate mixed-Poisson models (Song et al., 

2006; Miaou and Song, 2005). The first two types of models require conditional independence 

assumption for crashes of different severities and use only partial information at a time.  This is 

still an open research area that needs to be addressed, both in terms of the statistical and logical 

strengths and limitations of each approach. The research team has evaluated this model type and 

the results are presented in Appendix E. 

 

Process #3: Process/State/System Model 

 In this process, functional and statistical relationships are established and possibly logical 

constraints are applied to characterize the effect of inter- and intra-sites-times heterogeneities on 

outcome variables based on logical, empirical, and other supporting theories. For example, in a 

mixed-Poisson model, a �log link-function� is usually adopted to link the mean of Poisson with 

covariates and other unobserved effects. A large body of literature has been published in the 

highway safety community in this area. Some of the decisions to be made during the process 

include which types of fixed and random effects to consider, including covariate effects, 

temporal effects, spatial effects, and exchangeable effects. Variance (as well as other higher 

order) structures change when different random effects are assumed. So far, most of the 
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predictive models have been formulated parametrically; some semi-parametric or even non-

parametric models are possible to relax some of the assumptions made about random effects and 

functional form for the Poisson mean. 

 

Process #4: Parameter Model 

 This process is relevant only if the analyst decides to take a full-Bayes modeling 

approach where the distributions of �priors� (and �hyperpriors�) need to be specified. So far, 

non-informative priors are typically employed in the highway safety literature. However, in some 

instances, adopting partially informative priors could be beneficial. For instance, Miranda-

Moreno et al. (2008) have discussed how to incorporate information collected from previous 

studies into Bayesian models. Models that incorporate prior information usually performed better 

than models with vague or non-informative priors. 

 

Process #5: Model Choice and Interrogation Methods 

 This process selects a series of statistical tests and logical arguments to decide which 

models may have the best predictive power. This includes developing statistical criteria to 

compare model performance, developing sensitivity or robustness analysis by allowing 

competitive yet plausible assumptions to be evaluated, including some specification tests. 

 

Determine Inferential Goals  

Without encroaching onto the decision theory area, where some sort of �loss function� 

(such as benefit-cost ratios or some sorts of utility functions) will need to be determined by the 

users of the predictive model for their individual applications, this process determines whether a 
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point prediction coupled with a simple estimate of its standard error, an interval prediction (e.g., 

2.5th and 97.5th percentile �credible� intervals in Bayesian statistics), or a full probability 

distribution for the prediction is needed.  As will be discussed in the next section, more detailed 

inferential goals will require more sophisticated computational methods to fully capture the 

sampling variations in producing estimates and predictions. 

 

Select Computation Techniques and Tools  

This is the process where frequentists (analysts who use the likelihood-based method) 

(McCullagh and Nelder, 1989), empirical Bayesian (EB) (Hauer, 1997), and Bayesian (Carlin 

and Louis, 2000; Gelman et al., 2004) analysts are likely to differ in their estimating approaches 

and use of different �stochastic approximations� to reduce computational burden, such as 

asymptotic normality, �plug-in� estimator, linearization method, Laplace approximation, 

Gaussian quadrature approximation, etc. Many statistical tools are now available for modeling 

nonlinear mixed-effects models, using both Bayesian and frequentist methods, under the so-

called exponential family of probability distributions, where the Poisson model is a special case. 

More difficult inferential goals will require more sophisticated computational methods to fully 

capture the sampling variations in producing estimates and predictions.  By being able to take 

advantage of the unprecedented computing power available today, simulation-based methods, 

including various bootstrap, cross-validation, and Markov Chain Monte Carlo (MCMC) methods 

(Gilks et al., 1996), have been particularly popular in the statistical community in the last 15 

years, regardless of whether the likelihood-based, EB, or Bayesian approach is taken.  

 Regardless of the statistical approach, effective prediction procedures attempt to reduce 

the mean squared error (MSE) of predictions, which strikes a balance between reducing 
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predictive variance and reducing predictive bias.  In addition, recent statistical developments in 

the area of mixed-effect models (i.e., models with both fixed and random effect components), 

including the mixed-effect Poisson, logit, and probit models, appear to be a unifying force 

among various statistical approaches, including the frequentist and Bayesian approaches. 

 

Model Development 

This section describes the approach used for developing the different classes of statistical 

models. The approach was based on the four-step modeling framework described in the previous 

section.  

For all model classes, the modeling objective consists of estimating the crash frequency 

of motor vehicle crashes for each transportation element listed in Table 5.1. The units for these 

models were in number of crashes per year. For each class, models are estimated for two severity 

levels: (1) all crashes (defined as Total) or (2) KABCO and KAB. The crash severity levels were 

defined above. 

 The statistical models developed in this body of work are defined as observational 

models. Given the nature of the data, a mixed-Poisson modeling framework was used for 

developing these models. This modeling framework is the preferred method for                                             

modeling non-negative and independent discrete events, such as motor vehicle crashes. The 

selected mixed-Poisson model was the Poisson-gamma or negative binomial model. Although 

this model has some limitations (see Lord, 2006), the negative binomial offers a straightforward 

way to accommodate the over-dispersion commonly found in crash data (Lord et al., 2005b); 

over-dispersion refers to the amount of variation in the data that cannot be entirely captured by a 

Poisson model, where the variance must be equal to the mean. In addition, the mixed-distribution 
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of the Poisson-gamma function has a closed form and the mathematics to manipulate the 

relationship between the mean and the variance structures is relatively simple (Hauer, 1997). 

 Poisson-gamma models in highway safety applications have been shown to have the 

following probabilistic structure: the number of crashes at the i -th entity (road section, 

intersections, etc.) and t -th time period, itY , when conditional on its mean itµ , is assumed to be 

Poisson distributed and independent over all entities and time periods as: 

 

)(~| ititit PoY µµ  i = 1, 2, �, I and t = 1, 2, �, T   (5.8) 

 

The mean of the Poisson is structured as: 

 

( ; ) exp( )it itf eX βm =         (5.9) 

Where, 

(.)f  is a function of the covariates (X); 

β  = a vector of unknown coefficients; and 

ite  = the model error independent of all the covariates. 

It is usually assumed that exp( ite ) is independent and gamma distributed with a mean 

equal to 1 and a variance  1 / φ   for all i  and t  (with φ  > 0). With this characteristic, it can be 

shown that itY , conditional on (.)f  and φ , is distributed as a Poisson-gamma random variable 

with a mean (.)f  and a variance )/(.)1(.)( φff +  respectively. The term φ  is usually defined as 

the �inverse dispersion parameter� of the Poisson-gamma distribution (note: in the statistical and 

econometric literature, 1α φ=  is usually defined as the dispersion parameter; in some published 
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documents, the variable α  has also been defined as the �over-dispersion parameter�). Usually, 

the dispersion parameter or its inverse is assumed to be fixed, but recent research in highway 

safety has shown that the variance structure can potentially be dependent on the covariates 

(Hauer, 2001; Heydecker and Wu, 2001; Miaou and Lord, 2003; Lord et al., 2005a). In this 

work, models with both fixed and varying dispersion parameters were estimated. For the varying 

dispersion parameter, the following functional form was used: 

( )1 expit it t
it

Zα δφ= = ×                                                 (5.10) 

Where,  

itZ = a vector of secondary covariates (not necessarily the same as the covariates in 

estimating the mean function itm ); and 

td  = regression coefficients corresponding to covariates itZ . 

The inferential goals for this project were to provide point estimates and associated 

standard errors. In other words, the modeling output consists of providing the estimated mean 

value for each transportation element analyzed. Given these goals, the statistical software SAS 

(SAS, 2002) was used to estimate the coefficients for all the models, with the exception of the 

multivariate models. Given the complexity of these models (and discussed in the previous 

section), the coefficients were estimated using the Bayesian function in MathLAB (MathWorks, 

Inc., 2006). It should be pointed out that a Poisson-lognormal modeling framework was used for 

the multivariate model (see Appendix E). This modeling framework offers more flexibility than 

the negative binomial model, because the correlation matrix can be fully generalized as opposed 

to the Poisson or the negative binomial multivariate model. 



 

 69

AMF Estimation 

This section describes the different approaches that were evaluated or used for selecting 

and estimating the AMFs for rural multilane highways and intersections located on this type of 

facility. The first part describes the expert panel process that was employed for this work. The 

second part covers the methods used for estimating AMFs based on regression models and data.  

 

Joint NCHRP 17-25/17-29 Expert Panel 

 Since literature on AMFs for multilane rural roadways is limited, it was hoped that expert 

panels might be able to combine the limited past evaluations specific to this roadway class with 

modified versions of two-lane AMFs, already developed through expert panels, to develop the 

needed estimates.  It was also hoped that this option might produce multiple AMFs at a lower 

cost than would be required by new analyses.    

A critical requirement was that the panel be analysis-driven.  The AMFs derived by the 

panel were to be based on critical reviews of the existing research literature and on a consensus 

decision that the results from the research literature were robust enough to allow development of 

an AMF with at least a medium-high level of predictive certainty.  At times, the AMF was based 

not only on the findings from the original research study, but on additional limited analyses of 

the data from one or more studies.  Given this orientation, the composition of panel membership 

needed to include both expert researchers knowledgeable about the AMFs of interest and about 

the strengths and weaknesses of study methods, and a group of expert state and local AMF users 

(i.e., safety engineers) with knowledge of both the specifics of the AMFs needed and knowledge 

of real-world conditions under which those evaluated treatments were probably implemented.  
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The decisions on panel membership were made jointly by the Principal Investigators of the two 

involved NCHRP projects.  Members of the panels for each project are shown in Figure 5.2. 

 

 

 

 

 

 

 

Figure 5.2 Members of the Analysis-Driven Expert Panel 

The panel met for a three-day period.  Because the number of potential AMFs was greater 

than could be studied and discussed in this time frame, the AMFs were prioritized before the 

meeting.  Here, the 17-25 project team and the Principal Investigator for NCHRP 17-29 

developed two lists of candidate variables to consider for AMF development:  one for roadway 

segment variables and one for intersection variables. These lists were based on the results of an 

AMF Knowledge Matrix developed by the NCHRP 17-25 team and on the specific AMF needs 

of the companion project. The two lists were sent to each member of the expert panel before the 

meeting.  The panel members reviewed each list separately (intersections and segments) and 

ranked each variable with respect to level of importance as either primary (P) or secondary (S). 

Primary variables were those believed to be the most important predictors of safety on the road 

type in question and in definite need of discussion at the meeting. Secondary variables were 

those believed to be of less importance with respect to predicting safety and should only be 

considered for discussion at the meeting if time permitted. The primary variables were also 

 • Dr. Dominique Lord, Texas A&M University (Principal Investigator, NCHRP 17-29) 

• David Harkey, UNC Highway Safety Research Center (Principal Investigator, NCHRP 17-25) 

• Dr. James Bonneson, Texas Transportation Institute 
• Dr. Forrest Council, VHB 
• Ms. Kim Eccles, VHB 

• Dr. Ezra Hauer , University of Toronto (Retired)  
• Mr. Loren Hill, State Highway Safety Engineer, Minnesota DOT 
• Mr. Brian Mayhew, North Carolina DOT 
• Dr. Bhagwant Persaud, Ryerson University (representing NCHRP 17-29) 
• Dr. Raghavan Srinivasan, UNC Highway Safety Research Center 
• Dr. Simon Washington, Arizona State University 

• Mr. Tom Welch, State Transportation Safety Engineer, Iowa DOT 
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ranked from most important (first) to least important (last). These rankings were based on each 

member�s assessment of: (1) the perceived magnitude of the effect of the variable on safety and 

(2) the quality and extent of reliable information in the literature on which an AMF could be 

based.  The panel inputs were then compiled by the NCHRP 17-25 team to develop a final list 

for discussion.     

The project team then developed and distributed to each panel member a resource 

notebook.  This notebook included the results of the prioritization task, contact information for 

all panel members, resource materials for each variable/treatment, and pre-meeting assignments 

for the panel members.  The resource materials included the following for each AMF under 

consideration: 

• The AMF summary material developed earlier in NCHRP 17-25. This material included 

the draft Research Results Digest for those AMFs considered to have high or medium-

high levels of predictive certainty and summary pages from the interim report for those of 

lower quality.   

• The AMF summary from NCHRP 17-27 (Parts I and II of the Highway Safety Manual). 

This draft summary had been developed within the past two years, and included a second 

recent assessment of AMFs along with a discussion of the studies from which they were 

taken or derived; a discussion of materials reviewed without the recommendation of an 

AMF; or a listing of possible resources that may be reviewed for future AMF 

development consideration. 

• Copies of five cross-sectional studies that included a number of the high-priority 

elements.  A description of the models developed and the variables included was 
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provided for each study. These models could possibly provide additional insight about 

the direction and magnitude of the effect of the variables found to be significant. 

• A draft procedure for adjusting AMF estimates and standard errors.   This procedure had 

been developed and applied within the NCHRP 17-27 project. 

In order to make sure all treatments or variables were adequately addressed, the panel 

members were given pre-meeting assignments. The panel was divided into three groups, and 

each group was assigned a subset of the variables to review prior to the meeting and asked to 

help lead the discussion on those topics. The panel was asked to focus on three questions: 

1) Do the materials presented include enough quantitative information to potentially develop 

an AMF for urban and suburban arterials (or rural multilane highways)? The materials 

provided to the panel included a wide spectrum of study types (e.g., rigorous before-after 

studies, simple before-after studies, cross-sectional studies, or less vigorous data 

assessments). In many cases, the materials and existing AMFs were related to rural two-

lane roads.  The panel member was asked to assess whether or not the material was 

sufficient for the specification of an AMF for a rural multilane highway.   

2) If an AMF can be developed from the material provided, what is the magnitude of the 

effect and to what types and severities of crashes does it apply?   

3) Are there other studies that are not included in the existing set of materials that should be 

discussed at the meeting? 

The panel members prepared accordingly for the meeting, and the meeting was held at 

the UNC Highway Safety Research Center facilities.  The NCHRP 17-25 project team recorded 

detailed notes of the ensuing discussions and continually displayed both the notes and possible 
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findings.  Final decisions were then made by panel consensus.  Four AMFs were used from this 

process. A report on that review is included in Appendix C. 

 

AMFs from Data and Models  

 AMFs can be estimated using various statistical methods. Three approaches were 

considered for estimating the AMFs. Each one is briefly described below. 

 The first method is based on the before-after study framework. This method consists of 

estimating the safety effects of changes in geometric design features, traffic operations, or other 

characteristics by examining the increase or reduction in crash counts between the before and 

after periods. Three techniques have been proposed for this kind of study: 1) the simple or naïve 

before-after study, 2) the before-after study with a control group, and 3) the before-after study 

using the EB method. These techniques, including their limitations, have been well documented 

by others and are not described here (Hauer, 1997; Persaud et al., 2001 and 2003; Ye and Lord, 

2007). Given the scope and the type of data collected in this study, the before-after method was 

not used for this research. 

 The second method consists of estimating AMFs using the coefficients of statistical 

models. This method has been used by Lord and Bonneson (2007) and Washington et al. (2005) 

for estimating AMFs for rural frontage roads in Texas and rural intersections in various states, 

respectively. The AMFs are estimated the following way: 

( )j j jx y

jAMF e
β ⎡ ⎤× −⎣ ⎦=         (5.10) 

Where, 

jx  =  range of values or a specific value investigated (e.g., lane width, shoulder 

width, etc.) for AMF j ; 
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 jy  = baseline conditions or average conditions for the variable jx  (when needed 

or available); and 

 jβ  = regression coefficient associated for the variable j  (estimated from data). 

 This method provides a simple way to estimate the effects of changes in geometric design 

features. However, although the variables are assumed to be independent, they may be 

correlated, which could affect the coefficients of the model.  The Variance Inflation Factor (VIF) 

can be used for detecting correlated variables, but this procedure usually flags only extreme 

cases of correlation (Myers, 2000). This method was used for estimating AMFs in this work, and 

the results are presented in the next chapter. Two AMFs could be produced for this method.  

 For the third method, AMFs are estimated using baseline models and applying them to 

data that do not meet the nominal conditions. The characteristics of baseline models are 

described above. This method has been proposed by Washington et al. (2005), who have re-

calibrated models for estimating the safety performance of rural signalized and unsignalized 

intersections. For this method, the baseline model is first applied to sites not meeting all of the 

baseline conditions; then, the predicted and observed values per year are compared, and a linear 

relationship between these two values is estimated via a regression model to determine whether 

or not AMFs could be produced from its coefficients. The linear equation is given by the 

following: 

 1 1i i m mY X Xµ γ γ− = + +K        (5.11) 

Where, 

 iµ  = mean number of crashes for site i  per year estimated by the baseline 

model; 

 iY  = observed number of crashes for site i  per year; 
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 mX  = a vector of the baseline variables (each site not meeting one or more of 

these variables); and 

 mγ  = coefficients estimated from data. 

 The AMFs are estimated using the following relationship when the coefficients are found 

to be statistically significant (e.g., 5%- or 10%-level): 
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Where, 

 mAMF  = AMF for coefficient m ;  and  

n  = the number of observations in the sample. 

 This method was applied and evaluated in this work, but no AMFs could be produced. 

 

Chapter Summary 

 This chapter described the modeling methodologies performed in this work. The first 

section covered the accident prediction methodology. The proposed methodology separates the 

multilane rural networks for each state into segments and intersections. Specific models would 

be developed for each element. The second section provided information about the model classes 

and functions. Three types of models were proposed: baseline models, general ADT models, and 

models with covariates. The third section presented the modeling framework for developing 

statistical models. The modeling framework was divided into four steps: determine the modeling 

objective matrix; establish the appropriate processes to develop the models; determine the 

inferential goals; and select the computation techniques and tools. The fourth section described 

the characteristics of the models developed in this work. All the models were developed using 
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the Poisson-gamma or NB regression framework. The Poisson-lognormal was used for 

developing models by crash severity. The last section described the methods used for estimating 

AMFs. The next chapter summarizes the modeling results. 
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CHAPTER VI 

Modeling Results 

 

This chapter describes the results of modeling undertaken for this project. The chapter is 

divided into three sections. The first section describes the modeling results for intersections, 

segments, and by crash type. The second section provides a discussion about the recommended 

AMFs. The third section describes the results of the cross-validation study.  

 

Modeling Output 

 This section provides details about the results for the statistical models developed for this 

project. The first sub-section covers intersection models. The second sub-section describes the 

segment models. The third sub-section presents the characteristics of the models by crash type.  

 

Intersection Models 

This section summarizes the modeling results for intersection models. Also relevant are 

models recently estimated by Washington et al. (2005) for 3- and 4-legged stop-controlled 

intersections on multilane rural roads as part of an effort that re-estimated models for two-lane 

rural roads to be presented in HSM Chapter 8. Those relevant models are presented in Appendix 

A. The section is primarily divided into four parts. The first part describes the two methods used 

for assessing the statistical fit of models. The second part covers baseline models. The third part 

describes general ADT models. The fourth part summarizes models with covariates. The 

coefficients for all the models were estimated using SAS (SAS, 2002).  
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Assessment of the Goodness-of-Fit of Models 

The assessment of the models (i.e., goodness-of-fit) was performed using the statistical 

tools provided by the software program (i.e., deviance, log likelihood, etc.) and the two methods 

proposed by Oh et al. (2003). The two methods are described below. 

  The Mean Absolute Deviance (MAD) provides a measure of the average mis-prediction 

of the model (Oh et al., 2003). It is computed using the following equation: 

 

1

1
�

n

i
i

MAD y y
n =

= −∑         (6.1) 

 

 The Mean Squared Predictive Error (MSPE) is typically used to assess the error 

associated with a validation or external data set (Oh et al., 2003). It can be computed using 

Equation (6.2): 

 

 ( )2
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1
�

n

i i
i

MSPE y y
n =

= −∑        (6.2) 

 

Baseline Models 

It was possible to develop baseline models for total (KABCO) and injury (KAB) crashes 

for 3- and 4-legged stop-controlled intersections using the California data. These models are 

shown below. 
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4-Legged Two-Way Stop-Controlled (TWSC)  

Table 6.1 summarizes the modeling results for the baseline models for 4-legged TWSC 

intersections. The models were estimated for the following baseline conditions:  no turn lanes, no 

illumination, median on major, adequate sight distance, and angle between -5o and +5o. The 

functional form for the models is the following (in crashes per year): 

1 2
0 1 2F Fβ βµ β=          (6.3)  

Table 6.1 Baseline Models for 4-Legged TWSC Intersections (California Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )  -10.7137 (1.6507)   -11.4399 (2.2568) 

F1 ( 1β )     0.8482 (0.1703)      0.8281 (0.2302) 

F2 ( 2β )     0.4481  (0.0827)      0.4122 (0.1108) 

Dispersion Parameter (α )     0.4935 (0.1286)      0.6551  (0.2008) 
                                           Goodness-of-fit Statistics 
Number of Observations 62 62 
Deviance  75.5453 65.8148 
Pearson Chi-Square 6.9760 60.4798 
Log Likelihood 1092.6824 111.4977 
MADa 5.557 2.3864 
MSPEb 69.537 14.1147 

aMAD = Mean absolute deviation (see description above) 
bMSPE = Mean square prediction errors (see description above)  
 

3-Legged Two-Way Stop-Controlled (SC)  

 Table 6.2 summarizes the modeling results for the baseline models for 3-legged SC 

intersections. Similar to the unsignalized 4-legged models described above, the baseline 

conditions were as follows:  no turn lanes, no illumination, median on major, adequate sight 

distance, and angle between -5o and +5o. The functional form for the models is the following (in 

crashes per year): 

 

1 2
0 1 2F Fβ βµ β=          (6.4) 
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Table 6.2 Baseline Models for 3-Legged SC (California Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )  -13.0982 (0.9497)   -12.5606 (1.3239) 

F1 ( 1β )     1.2040 (0.0973)      1.0130 (0.1321) 

F2 ( 2β )     0.2357  (0.0515)      0.2280 (0.0673) 

Dispersion Parameter (α )     0.4602 (0.0755)      0.5661  (0.1290) 
                                           Goodness-of-fit Statistics 
Number of Observations 133 133 
Deviance  144.4375 135.0602 
Pearson Chi-Square 171.5762 148.4170 
Log Likelihood 3820.6699 202.2043 
MAD 7.415 2.077 
MSPE 229.902 13.888 

 

General ADT Models 

 General ADT models were calibrated for consideration for use as baseline models where 

these are not suitable or where information about nominal conditions is not available. Separate 

general ADT models were estimated for California and Minnesota, and are presented below.  

 

4-Legged Signalized Intersections  

 Tables 6.3 and 6.4 summarize the modeling results for 4-legged signalized intersections 

based on the California and Minnesota data, respectively. It was not possible to calibrate an 

injury model for California. The functional forms for the models are the following (in crashes per 

year): 

 

1 2
0 1 2F Fβ βµ β=          (6.5a) 

( ) 3 3
0 1 2 0 TF F F

β βµ β β= + =        (6.5b) 
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Table 6.3 General ADT Models for 4-Legged Signalized Intersections (California Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )  -8.5482 (2.5110) 

F1 ( 1β )   0.9575 (0.2605) 

F2 ( 2β )   0.0958  (0.0914) 

Dispersion Parameter (α )   0.3238 (0.0823) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 37 
Deviance  38.9363 
Pearson Chi-Square 33.6301 
Log Likelihood 3636.9062 
MAD 16.979 
MSPE 453.146 

 
 
 

N/A 

 

Table 6.4 General ADT Models for 4-Legged Signalized Intersections (Minnesota Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )  -7.4234 (1.9916)   -12.2515 (3.6628) 

F1 ( 1β )   0.7224 (0.1865)             -- 

F2 ( 2β )   0.3369 (0.1012)             -- 

FT ( 3β )        --    1.2787 (0.3602) 

Dispersion Parameter (α )    0.2767 (0.0709)    0.5658  (0.1873) 
                                           Goodness-of-fit Statistics 
Number of Observations 43 43 
Deviance  49.1457 52.2327 
Pearson Chi-Square 52.2477 35.1398 
Log Likelihood 6448.0434 410.9344 
MAD 15.411 4.193 
MSPE 480.955 31.061 

 

3-Legged Signalized Intersections  

 Table 6.5 summarizes the modeling results for 3-legged signalized intersections. The 

models were estimated using the California data. Due to the small sample size, the models 

presented in Table 6.5 were not recommended for application in the HSM Chapter 9. The 

functional form for the models is the following: 
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( ) 1 1
0 1 2 0 TF F F

β βµ β β= + =        (6.6) 

 

Table 6.5 General ADT Models for 3-Legged Signalized Intersections (California Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )   -6.4369 (2.6583)   -14.0930 (6.5936) 

FT ( 1β )    0.7610 (0.2667)      1.2881 (0.6503) 

Dispersion Parameter (α )    0.2835 (0.1288)      0.1660 (0.1942) 
                                           Goodness-of-fit Statistics 
Number of Observations 13 13 
Deviance  13.4935 12.4248 
Pearson Chi-Square 9.8716 11.1029 
Log Likelihood 998.2771 11.0262 
MAD 12.522 1.5772 
MSPE 256.169 4.9500 

 

4-Legged TWSC Intersections  

 Tables 6.6 and 6.7 summarize the modeling results for 4-legged TWSC intersections 

based on the California and Minnesota data. The functional form for the models is the following 

(in crashes per year): 

1 2
0 1 2F Fβ βµ β=          (6.7) 
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Table 6.6 General ADT Models for 4-Legged TWSC Intersections (California Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )   -8.3366 (0.7983)    -8.7935 (1.0551) 

F1 ( 1β )    0.6697 (0.0827)     0.6016 (0.1089) 

F2 ( 2β )    0.3659 (0.0351)     0.3517 (0.0462) 

Dispersion Parameter (α )    0.6762 (0.0759)     0.8409 (0.1241) 
Goodness-of-fit Statistics 

Number of Observations 267 267 
Deviance  306.9926 291.3532 
Pearson Chi-Square 371.7419 347.0326 
Log Likelihood 5501.2040 497.6786 
MAD 6.090 2.402 
MSPE 90.142 13.432 

 

Table 6.7 General ADT Models for 4-Legged TWSC Intersections (Minnesota Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )   -9.3818 (0.8863)   -10.1463 (1.2815) 

F1 ( 1β )    0.6862 (0.0964)      0.5631 (0.1402) 

F2 ( 2β )    0.5984 (0.0561)      0.7001 (0.0892) 

Dispersion Parameter (α )    0.6813 (0.0906)      1.2384 (0.2080) 
                                           Goodness-of-fit Statistics 
Number of Observations 224 224 
Deviance  265.4875 224.3631 
Pearson Chi-Square 202.5639 208.7450 
Log Likelihood 7224.2526 1016.3425 
MAD 7.621 2.902 
MSPE 239.267 31.510 

 

3-Legged SC Intersections 

 Tables 6.8 and 6.9 summarize the modeling results for 3-legged SC intersections. The 

models were estimated from the California and Minnesota data. The functional form for the 

models is the following (in crashes per year): 

1 2
0 1 2F Fβ βµ β=          (6.8) 

 



               Table 6.8 General ADT Models for 3-Legged SC Intersections (California Data)
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 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -11.7868 (0.5926)   -12.4338 (0.7674) 

F1 ( 1β )     1.0457 (0.0603)      0.9824 (0.0771) 

F2 ( 2β )     0.3149 (0.0302)      0.2781 (0.0358) 

Dispersion Parameter (α )     0.6659 (0.0607)      0.6302 (0.0894) 
                                           Goodness-of-fit Statistics 
Number of Observations 403 403 
Deviance  451.9755 421.0516 
Pearson Chi-Square 532.3831 473.6664 
Log Likelihood 9405.2866 430.2737 
MAD 6.974 1.864 
MSPE 181.859 10.069 

 

Table 6.9 General ADT Models for 3-Legged SC Intersections (Minnesota Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )   -8.1815 (1.1867)   -8.5187 (1.6377) 

F1 ( 1β )    0.5798 (0.1151)    0.4074 (0.1644) 

F2 ( 2β )    0.4591 (0.0598)    0.5498 (0.0913) 

Dispersion Parameter (α )    0.6702 (0.1122)    0.9486 (0.2568) 
                                           Goodness-of-fit Statistics 
Number of Observations 172 172 
Deviance  206.6663 179.8830 
Pearson Chi-Square 155.4650 203.0010 
Log Likelihood 1542.0855 -13.5549 
MAD 4.207 1.423 
MSPE 39.283 3.843 

 

Models with Covariates 

 Models with covariates were calibrated for certain HSM applications (e.g., network 

screening, countermeasure development, or before-after safety evaluations).  The models 

described below have one of the following two forms (in crashes per year): 

31 2
0 1 2

n

k k
k

x

F F e
β

β βµ β =
∑

=         (6.9a) 
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( ) 1 21
0 1 2 0

n

k k
k

x

TF F F e
ββ βµ β β =

∑
= + =       (6.9b) 

 The modeling results are shown in Tables 6.10 to 6.22. For several intersection categories 

or crash severities (marked �N/A�), it was not possible to calibrate or estimate these models with 

covariates. For some intersection types or severities, a number of alternative models were 

calibrated. 

 

Table 6.10 Models with Covariates for 3-Legged Signalized Intersections (California Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )   -4.8630 (2.6385) 

FT ( 1β )    0.5458 (0.2741) 

MinLT ( 2β )*  0=Yes, 1=No    0.7334 (0.3575) 

Dispersion Parameter (α )    0.2066 (0.1013) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 13 
Deviance  13.4478 
Pearson Chi-Square 11.4871 
Log Likelihood 999.9934 
MAD 11.621 
MSPE 212.922 

 
 

N/A 

*MinLT = Left-turn lane on minor approach exists 
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Table 6.11 Models with Covariates for 4-Legged TWSC Intersections 
(California Data) (Model 1) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -8.4508 (0.7897) 

F1 ( 1β )   0.7013 (0.0825) 

F2 ( 2β )   0.3835 (0.0352) 

MajLT ( 3β )* 0=Yes, 1= No  -0.4175 (0.1209) 

Dispersion Parameter (α )   0.6365 (0.0726) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 267 
Deviance  307.0439 
Pearson Chi-Square 365.9891 
Log Likelihood 5507.2510 
MAD 6.022 
MSPE 90.775 

 
 

N/A 

*MajLT = Left-turn lane on major approaches exist 

 
Table 6.12 Models with Covariates for 4-Legged TWSC Intersections 

(California Data) (Model 2) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
Intercept ( 0ln β )   -8.5999 (0.7986)   -8.9643 (1.0595) 

F1 ( 1β )    0.7455 (0.0857)    0.6551 (0.1135) 

F2 ( 2β )    0.3753 (0.0349)    0.3550 (0.0461) 

Median ( 3β )* 1=Yes, 0=No     -0.5742 (0.1860)  -0.3991 (0.2386) 

Dispersion Parameter (α )    0.6441 (0.0732)    0.8277 (0.1226) 
                                           Goodness-of-fit Statistics 
Number of Observations 267 267 
Deviance  306.5520 290.7433 
Pearson Chi-Square 389.7000 360.3213 
Log Likelihood 5506.3188 499.1261 
MAD 5.948 2.381 
MSPE 85.876 13.373 

*Median = Divided/undivided median 
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Table 6.13 Models with Covariates for 4-Legged TWSC Intersections 
(California Data) (Model 3) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -8.5884 (0.7899) 

F1 ( 1β )   0.7492 (0.0847) 

F2 ( 2β )   0.3866 (0.0350) 

Median ( 3β )* 1=Yes, 0=No       -0.4403 (0.1894) 

MajLT ( 4β )*  0=Yes, 1=No       -0.3365 (0.1234) 

Dispersion Parameter (α )   0.6205 (0.0713) 

 
 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 267 
Deviance  306.4200 
Pearson Chi-Square 376.2774 
Log Likelihood 5510.0936 
MAD 5.921 
MSPE 86.575 

 
 

N/A 

*Median = Divided/undivided median 
*MajLT = Left-turn lane on major approaches exist 

 

Table 6.14 Models with Covariates for 4-Legged TWSC Intersections 
(California Data) (Model 4) 

 KABCO KAB 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -7.5515 (0.9041) 

F1 ( 1β )   0.6921 (0.0833) 

F2 ( 2β )   0.3559 (0.0349) 

MinLT ( 3β )*  0=Yes, 1=No    -0.9634 (0.4911) 

Dispersion Parameter (α )   0.6587 (0.0745) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 267 
Deviance  307.3116 
Pearson Chi-Square 362.5429 
Log Likelihood 5503.6971 
MAD 6.104 
MSPE 92.334 

 
 

N/A 

*MinLT = Left-turn lane on minor approaches exist 
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Table 6.15 Models with Covariates for 4-Legged TWSC Intersections 
(California Data) (Model 5) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -8.4599 (0.7929) 

F1 ( 1β )   0.6637 (0.0820) 

F2 ( 2β )   0.3698 (0.0350) 

MajRT ( 3β )*  1=Yes, 0=No     0.2239 (0.1223) 

Dispersion Parameter (α )   0.6646 (0.0750) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 267 
Deviance  307.2130 
Pearson Chi-Square 379.7275 
Log Likelihood 5502.8411 
MAD 6.166 
MSPE 91.104 

 
 

N/A 

*MajRT = Right-turn lane on major approaches 

 

Table 6.16 Models with Covariates for 4-Legged TWSC Intersections 
(California Data) (Model 6) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -8.2757 (0.8007) 

F1 ( 1β )   0.6794 (0.0831) 

F2 ( 2β )   0.3624 (0.0352) 

Light ( 3β )*  1=No, 0=Yes     -0.2064 (0.1187) 

Dispersion Parameter (α )   0.6675 (0.0750) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 267 
Deviance  306.5502 
Pearson Chi-Square 370.2564 
Log Likelihood 5502.7320 
MAD 6.088 
MSPE 91.019 

 
 

N/A 

*Light = Presence of lighting at the intersection 
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Table 6.17 Models with Covariates for 4-Legged TWSC Intersections 
(California Data) (Model 7) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )   -8.0123 (0.9030) 

F1 ( 1β )    0.7432 (0.0846) 

F2 ( 2β )    0.3690 (0.0347) 

MajRT ( 3β )*  1=Yes, 0=No         0.2266 (0.1213) 

MinLT ( 4β )*  0=Yes, 1=No        -0.8066 (0.4923) 

Median ( 4β )* 1=Yes, 0=No        -0.4644 (0.1900) 

Dispersion Parameter (α )    0.6238 (0.0717) 

 
 
 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 267 
Deviance  307.0927 
Pearson Chi-Square 382.3304 
Log Likelihood 5509.2353 
MAD 6.003 
MSPE 86.669 

 
 

N/A 

*MajRT = Right-turn lane on major approaches 
*MinLT = Left-turn lane on minor approaches 
*Median = Divided/undivided median 

 

Table 6.18 Models with Covariates for 4-Legged TWSC Intersections 
(Minnesota Data)  

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )    9.3028 (0.8896) 

F1 ( 1β )    0.7265 (0.0991) 

F2 ( 2β )    0.5707 (0.0569) 

Light (β3)*    0=No, 1=Yes     -0.3501 (0.1665) 
Dispersion Parameter (α )    0.6611 (0.0885) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 224 
Deviance  265.6219 
Pearson Chi-Square 200.5806 
Log Likelihood 7226.5513 
MAD 7.397 
MSPE 238.132 

 
 

N/A 

*Light = Presence of lighting at the intersection 
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Table 6.19 Models with Covariates for 3-Legged SC Intersections 
(California Data) (Model 1) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -11.7156 (0.5768)  -12.3996 (0.7652) 

F1 ( 1β )   1.0962 (0.0600)    1.0107 (0.0782) 

F2 ( 2β )   0.2737 (0.0312)   0.2564 (0.0371) 

Light ( 3β )*   1=No, 0=Yes    -0.4841 (0.1117)  -0.2698 (0.1341) 

Dispersion Parameter (α )   0.6278 (0.0578)    0.6198 (0.0881) 
                                           Goodness-of-fit Statistics 
Number of Observations 403 403 
Deviance  449.9605 419.8631 
Pearson Chi-Square 485.5578 460.0294 
Log Likelihood 9414.9390 432.3090 
MAD 7.049 1.859 
MSPE 181.571 9.925 

*Light = Presence of lighting at the intersection 

Table 6.20 Models with Covariates for 3-Legged SC Intersections 
(California Data) (Model 2) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )   -11.9778 (0.5987) 

F1 ( 1β )    1.0730 (0.0615) 

F2 ( 2β )    0.3269 (0.0306) 

MajLT ( 3β )*  0=Yes, 1=No      -0.2169 (0.0990) 

Dispersion Parameter (α )    0.6575 (0.0600) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 403 
Deviance  450.8811 
Pearson Chi-Square 523.5833 
Log Likelihood 9407.7106 
MAD 6.900 
MSPE 181.042 

 
 

N/A 

*MajLT = Left-turn lane on major approaches exist 
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Table 6.21 Models with Covariates for 3-Legged SC Intersections 
(California Data) (Model 3) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -11.9236 (0.5817) 

F1 ( 1β )    1.1107 (0.0606) 

F2 ( 2β )    0.3128 (0.0294) 

Median ( 3β )*  1=Yes, 0=No   -0.5792 (0.1295) 

Dispersion Parameter (α )    0.6221 (0.0576) 

 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 403 
Deviance  450.7708 
Pearson Chi-Square 511.1065 
Log Likelihood 9415.8518 
MAD 6.883 
MSPE 180.382 

 
 

N/A 

*Median = Divided/undivided median 

Table 6.22 Models with Covariates for 3-Legged SC Intersections 
(California Data) (Model 4) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept ( 0ln β )  -11.8354 (0.5730) 

F1 ( 1β )   1.1345 (0.0603) 

F2 ( 2β )   0.2808 (0.0309) 

Median ( 3β )*  1=Yes, 0=No  -0.4535 (0.1340) 

Light ( 4β )*   1=No, 0=Yes  -0.3610 (0.1152) 

Dispersion Parameter (α )   0.6023 (0.0561) 

 
 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations 403 
Deviance  450.1355 
Pearson Chi-Square 484.6914 
Log Likelihood 9420.8527 
MAD 6.784 
MSPE 174.409 

 
 

N/A 

*Median = Divided/undivided median 
*Light = Presence of lighting at the intersection 
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Segment Models 

This sub-section summarizes the modeling results for rural multilane segments. The 

dependent variable is the number of crashes per year per mile. The coefficients of the models 

were estimated using SAS (SAS, 2002). The assessment of the models was performed using the 

statistical tools provided in SAS and the two methods proposed by Oh et al. (2003). The MAD 

and MSPE were described in the previous section.  

  

Undivided Highways 

 This section provides the modeling results for undivided highways. The section is divided 

into three parts and covers baseline models, general ADT models, and models with covariates. 

 

Baseline Models 

 This section describes the characteristics of the baseline models. To increase the sample 

size, the data from the states of Texas and Washington were merged together. The data could not 

be merged with the California data due to the lack of information about horizontal alignment. By 

merging the data, one can develop more robust models and minimize the biases associated with 

small sample size and low sample mean (Lord, 2006). The coefficients of the models were 

estimated using the following baseline conditions: lane width, 11-12 ft; shoulder width, 7-8 ft; no 

horizontal curves. 

 Models with segments that did not contain any intersections, in addition to the conditions 

listed above, were estimated, but were found unreliable. The sample size was too small, which 

affected the stability of the models. 
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Table 6.23 summarizes the modeling results for the baseline models. The functional form 

for the model with a varying dispersion parameter is the following (in crashes per year): 

1
0LF βµ β=          (6.10a) 

 0e Lγα =          (6.10b) 

 

Table 6.23 Baseline Models for Segments (Texas and Washington Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
            Model 

Intercept (ln β0)  -11.4448  (1.307)   -10.4414 (1.710) 
F (β1)      1.2870 (0.149)      1.0642  (0.194) 

            Dispersion Parameter 
Intercept (ln γ0)

a    -0.6743 (0.561)    -3.5973  (5.531) 
                                           Goodness-of-fit Statistics 
Number of Observations                   183               183 
-2 Log Likelihood           447.9            278.3 
AIC           453.9            284.3 
BIC           463.6            293.9 
MAD           0.958            1.073 
MSPE           2.596            5.699 

a Note: 0 0.6743e L e Lγα −= =  

General ADT Models 

 This section describes the characteristics of the general ADT models. To increase the 

sample size, the data from the states of Texas, California, and Washington were merged into one 

single database.  

 Table 6.24 summarizes the modeling results for the general ADT models. The functional 

form for the model with a fixed dispersion parameter is the following (in crashes per year): 

1
0LF βµ β=          (6.11) 
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Table 6.24 General ADT Models for Segments (Texas, California, and Washington Data) 
 Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 
            Model 

Intercept (ln β0)    -10.2351 (0.284)   -9.8320   (0.379) 
F (β1)       1.1901 (0.031)    1.0083   (0.042) 

            Dispersion Parameter 
Intercept (ln γ0)       0.1330   (0.066)  -0.4058   (0.108) 
                                           Goodness-of-fit Statistics 
Number of Observations                  2083            2083 
-2 Log Likelihood          8800.0         5143.8 
AIC          8806.0         5149.8 
BIC          8822.9         5166.7 
MAD            3.020           1.080 
MSPE          46.469           6.084 

 

Models with Covariates 

 This section describes the modeling results for models with covariates. Distinct models 

were developed for California, Texas, Minnesota, and Washington. 

 

California Models 

 Tables 6.25 and 6.26 summarize the model results for the California data. Table 6.25 

shows the results for the models with a fixed dispersion parameter, whereas Table 6.26 

summarizes the results for the models with a varying dispersion parameter. The tables illustrate 

that lane width, shoulder width, and the number of intersections located on the segment is 

associated with motor vehicle crashes. 

 The functional form for the model with a fixed dispersion parameter is the following (in 

crashes per year): 

{ }2 3 41
0

LW SW INTLF e β β ββµ β + +=        (6.12) 
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Table 6.25 Segment Models for Models with Covariates 
and Fixed Dispersion Parameter (California Data) 

Parameter Total Injury 
 Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -6.7469  (0.927) -7.0615 (1.326) 
F (β1)   1.1298  (0.057)   1.0967 (0.078) 
LW (β2)* -0.1905  (0.070) -0.2414  (0.096) 
SW (β3)* -0.0370  (0.008) -0.0381  (0.010) 
INT (β4)*     0.1005  (0.049) -- 
Dispersion Parameter (α) 0.4746  (0.050)  0.5103  (0.078) 
                                           Goodness-of-fit Statistics 
Number of Observations                 357                     357 
Deviance           380.647            353.5314 
Pearson Chi-Square          431.136                 394.0243 
Log Likelihood        8730.513            862.0125 
MAD              6.537                  2.037 
MSPE          198.073                14.760 

*LW = Lane width in ft; *SW = Total shoulder width (both sides) in ft; 
*INT = Number of intersections located on the segment 
 

The functional form for the model with a varying dispersion parameter is the following 

(in crashes per year): 

{ }2 3 41
0

LW SW INTLF e β β ββµ β + +=        (6.13a) 

0e Lγα =           (6.13b) 
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Table 6.26 Segment Models for Models with Covariates 
and Varying Dispersion Parameter (California Data) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

            Model 
Intercept (ln β0) -7.1636   (0.801)    -7.7696  (1.0878) 
F (β1) 1.1591  (0.051)   1.1043   (0.07135) 
LW (β2)* -0.1807  (0.056) -0.1927   (0.07485) 
SW (β3)* -0.03418   (0.0072) -0.03351(0.009720) 
INT (β4)* 0.1306  (0.042) -- 

            Dispersion Parameter 
Intercept (ln γ0) 0.05690    (0.124) -0.08261  (0.1808) 
                                           Goodness-of-fit Statistics 
Number of Observations                   357               357 
-2 Log Likelihood         2015.5          1281.1 
AIC         2027.5          1291.1 
BIC         2050.8          1310.4 
MAD           6.515            2.030 
MSPE        195.267           14.835 

*LW = Lane width in ft; *SW = Total shoulder width (both sides) in ft; 
*INT = Number of intersections located on the segment 
 

Texas Models 

 Tables 6.27 and 6.28 summarize the model results for the Texas data. Table 6.27 shows 

the results for the models with a fixed dispersion parameter. On the other hand, Table 6.28 

presents the results for the models with a varying dispersion parameter. The tables indicate that 

lane width, shoulder width, and the number of horizontal curves per mile (horizontal curve 

density) located on the segment are associated with motor vehicle crashes.  

 The functional form for the model with a fixed dispersion parameter is the following (in 

crashes per year): 

{ }2 3 41 _
0

LW SW CURVE DENLF e β β ββµ β + +=       (6.14) 
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Table 6.27 Segment Models for Models with Covariates 
and Fixed Dispersion Parameter (Texas Data) 

 KABCO KAB 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0)   -7.9488 (0.406)    -6.8242 (0.547) 
F (β1)    0.9749 (0.044)      0.7768 (0.058) 
LW (β2)*   -0.0533 (0.017)    -0.0844 (0.023) 
SW (β3)*   -0.0100 (0.003)    -0.0114 (0.005) 
CURVE_DEN (β4)*    0.0675 (0.012)     0.0635  (0.016) 
Dispersion Parameter (α)    0.3906 (0.036)     0.3793  (0.057) 
                                           Goodness-of-fit Statistics 
Number of Observations           1499            1499 
Deviance           1577.7           1304.7 
Pearson Chi-Square          1799.7           1524.7 
Log Likelihood          3429.9            -222.8 
MAD            1.702              0.826 
MSPE           11.236              2.727 

*LW = Lane width in ft; *SW = Total shoulder width (both sides) in ft; 
*CURVE_DEN = Number of horizontal curves per mile located on the segment 
 

The functional form for the model with a varying dispersion parameter is the following 

(in crashes per year): 

{ }2 3 41 _
0

LW SW CURVE DENLF e β β ββµ β + +=       (6.15a)  

0e Lγα =          (6.15b) 
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Table 6.28 Segment Models for Models with Covariates 
and Varying Dispersion Parameter (Texas Data) 

 KABCO KAB 
Parameter Estimate (Std Err) Estimate (Std Err) 

            Model 
Intercept (ln β0)    -8.4815 (0.387)     -6.9887 (0.524) 
F (β1)      1.0184 (0.042)      0.7889 (0.056) 
LW (β2)*   -0.04292 (0.015)    -0.08185 (0.021) 
SW (β3)*   -0.00859 (0.003)   -0.01014 (0.004) 
CURVE_DEN (β4)*    0.06202 (0.011)     0.06083 (0.016) 

            Dispersion Parameter 
Intercept (ln γ0)   -1.0586 (0.134)   -1.6155  (0.2003) 
                                           Goodness-of-fit Statistics 
Number of Observations            1499          1499 
-2 Log Likelihood          5268.1         3212.0 
AIC          5280.1         3224.0 
BIC          5311.9         3255.8 
MAD          1.698            0.823 
MSPE          11.437            2.765 

*LW = Lane width in ft; *SW = Total shoulder width (both sides) in ft; 
*CURVE_DEN = Number of intersections per mile located on the segment             
 

Minnesota Models 

Tables 6.29 and 6.30 summarize the model results for the Minnesota data. Table 6.29 

displays the results for models with a fixed dispersion parameter. Alternatively, Table 6.30 

shows the results for the models with a varying dispersion parameter. The tables indicate that 

lane width and shoulder widths are associated with motor vehicle crashes. However, the 

coefficient for the lane width variable is counterintuitive and is possibly caused by the small 

sample size. 

 The functional form for the model with a fixed dispersion parameter is the following: 

{ }2 31
0

LW SWLF e β ββµ β +=        (6.16) 
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Table 6.29 Segment Models for Models with Covariates 
and Fixed Dispersion Parameter (Minnesota Data) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0)    -7.8894   (0.917)   -9.7699  (1.952)     
F (β1)     0.9650   (0.109)     0.9546  (0.225)       
LW (β2)*      0.0449  (0.031)     0.0131  (0.058)      
SW (β3)*    -0.0469  (0.012)    -0.0204 (0.020)      
Dispersion Parameter (α)     0.3443   (0.097)     0.0117  (0.255)      
                                           Goodness-of-fit Statistics 
Number of Observations                114              114 
Deviance           124.818          93.178 
Pearson Chi-Square          114.925        118.549 
Log Likelihood          257.097         -78.571 
MAD              2.359             0.460 
MSPE             11.180             0.425 

*LW = lane width in ft; *SW = Total shoulder width (both sides) in ft 

 The functional form for the model with a varying dispersion parameter is the following: 

{ }2 31
0

LW SWLF e β ββµ β +=        (6.17a) 

0e Lγα =          (6.17b) 
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Table 6.30 Segment Models for Models with Covariates 
and Varying Dispersion Parameter (Minnesota Data) 

 Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

            Model 
Intercept (ln β0)     -8.2848  (0.925)      -9.7665 (1.947)    
F (β1)       0.9993 (0.102)       0.9540  (0.224)    
LW (β2)*     0.05533 (0.029)     0.01323  (0.057)    
SW (β3)*   -0.04327  (0.012)    -0.02057  (0.019)    

            Dispersion Parameter 
Intercept (ln γ0) -0.3125    (0.341)    -7.8167    (.)    
                                           Goodness-of-fit Statistics 
Number of Observations                 114            114 
-2 Log Likelihood         474.5         174.0 
AIC         484.5         184.0 
BIC         498.2         197.7 
MAD          2.447         0.460 
MSPE        12.003         0.424 

*LW = Lane width in ft; *SW = Total shoulder width (both sides) in ft 

 

Washington Models 

 Tables 6.31 and 6.32 summarize the model results for the Washington data. Table 6.31 

exhibits the results for models with a fixed dispersion parameter. Table 6.32 presents the results 

for models with a dispersion parameter that varies as a function of the segment length. The tables 

illustrate that lane width, shoulder width, the number of intersections, and horizontal curves per 

mile located on the segment are associated with motor vehicle crashes. However, it should be 

noted that the effects for some of the variables, such as lane width, horizontal curve density, and 

intersections are very large, compared to previous models documented above and in the 

literature. For instance, the change in the total number of crashes per ft is -40.0% ( 0.5076 1e− − ). 

Consequently, the authors caution about using these models for predicting motor vehicle crashes. 

 The functional form for the model with a fixed dispersion parameter is the following: 

{ }2 3 4 51 _
0

LW SW INT CURVE DENLF e β β β ββµ β + + +=      (6.18) 
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Table 6.31 Segment Models for Models with Covariates 
and Fixed Dispersion Parameter (Washington Data) 

 KABCO KAB 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0)      -5.7332 (3.268)    
F (β1)       1.4289 (0.320)    
LW (β2)*     -0.5354 (0.144)     
SW (β3)*     -0.0362 (0.027)     
INT (β4)*      0.1144 (0.056)     
CURVE_DEN (β5)*      0.1414 (0.068)     
Dispersion Parameter (α)      0.5742 (0.217)     

 
 
 

N/A 

                                           Goodness-of-fit Statistics 
Number of Observations                 37 
Deviance             35.608 
Pearson Chi-Square            43.518 
Log Likelihood          112.660 
MAD              2.692 
MSPE            27.696 

N/A 

*LW = Lane width in ft; *SW = Total shoulder width (both sides) in ft 
*INT = Number of intersections located on the segment 
*CURVE_DEN = Number of horizontal curves per mile located on the segment 

 

The functional form for the model with a varying dispersion parameter is the following: 

{ }2 3 41
0

LW SW INTLF e β β ββµ β + +=        (6.19a) 

0e Lγα =          (6.19b) 
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Table 6.32 Segment Models for Models with Covariates 
and Varying Dispersion Parameter (Washington Data) 

 KABCO KAB 
Parameter Estimate (Std Err) Estimate (Std Err) 

            Model 
Intercept (ln β0)     -4.9817 (3.443)     
F (β1)      1.4298 (0.330)     
LW (β2)*     -0.5862 (0.144)     
SW (β3)*   -0.04193 (0.026)     
INT (β4)*      0.1134 (0.054)     
CURVE_DEN (β5)*      0.1238 (0.065)     

 
 

N/A 

            Dispersion Parameter 
Intercept (ln γ0)     1.2105 (0.403)      
                                           Goodness-of-fit Statistics 
Number of Observations                   37 
-2 Log Likelihood          158.4 
AIC          172.4 
BIC          183.7 
MAD            2.806 
MSPE          27.002 

N/A 

*LW = Lane width in ft; *SW = Total shoulder width (both sides) in ft; 
*INT = Number of intersections located on the segment 
*CURVE_DEN = Number of horizontal curves per mile located on the segment 
 

Divided Highways  

This section summarizes the modeling results for divided highways. Statistical models 

were estimated for California and Texas, and only included the ones with covariates. Given the 

characteristics of the data, there were not enough observations for establishing baseline and 

general ADT models. In order to estimate models with baseline conditions, only segments with 

12-ft lane width were used for developing the models. About 90% of all segments contained 12-

ft lane width. For the models with a fixed dispersion parameter, a single intercept was estimated 

for each state. Due to the kind of modeling framework used for this part of the work, it was not 

possible to estimate a single intercept for each state for the model with a varying dispersion 

parameter. It should be pointed out that models for divided highways (median width equal to 30 

ft) predict fewer crashes than models for undivided highways for the same level of exposure. 
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 Table 6.33 summarizes the model results for the model with a fixed dispersion parameter. 

The table indicates that right shoulder width and median width are associated with motor vehicle 

crashes.  

 The functional form for the model with a fixed dispersion parameter is the following: 

{ }2 31
0

MW RSWLF e β ββµ β +=        (6.20) 

 

Table 6.33 Segment Models for Models with Covariates 
and Fixed Dispersion Parameter (Texas and California Data) 

 KABCO KAB 
Parameter Estimate (Std Err) Estimate (Std Err) 

State1:Intercept (ln β0)
�    -8.1080  (0.236)   -7.9600 (0.279) 

State2:Intercept (ln β0)
�    -8.4588  (0.220)   -8.1396 (0.261) 

F (β1)      1.0258 (0.022)    0.8584  (0.026 
MW (β2)*    -0.0023 (0.0005)   -0.0009  (0.001 
RSW (β3)*    -0.0740 (0.009)   -0.0612  (0.010 
Dispersion Parameter (α)     0.3791  (0.016)     0.3008  (0.020) 
                                           Goodness-of-fit Statistics 
Number of Observations 2587 2587 
Deviance  2826.0072 2717.9407 
Pearson Chi-Square 3841.1498 3129.3143 
Log Likelihood 68370.7398 6747.3372 
MAD 5.290655 1.647256 
MSPE 670.2857 16.48959 

*MW = median + left shoulder width in ft; *RSW = average right shoulder width (both sides) in ft 
� State 1: Texas, State 2: California 
 

Table 6.34 summarizes the model results for the model with a varying dispersion 

parameter. Similar to the previous results, the table shows that right shoulder width and median 

width are associated with motor vehicle crashes. The models listed in Table 6.34 were used to 

produce baseline models for the HSM Chapter 9 by incorporating variables that describe typical 

baseline conditions (i.e., median width = 30 ft and right shoulder width = 8 ft). 

 The functional form for the model with a varying dispersion parameter is the following: 
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{ }2 31
0

MW RSWLF e β ββµ β +=        (6.21a) 

 0e Lγα =          (6.21b) 

Table 6.34 Segment Models for Models with Covariates 
and Varying Dispersion Parameter (Texas and California Data) 

 KABCO KAB 
Parameter Estimate (Std Err) Estimate (Std Err) 

            Model 
Intercept (ln β0) -9.7776  (0.215) -8.7721 (0.242) 
F (β1)    1.1714  (0.0207)     0.9394 (0.0233) 
MW (β2)* -0.00390 (0.0006) -0.00181 (0.001) 
RSW (β3)* -0.04210 (0.007) -0.06008 (0.008) 

            Dispersion Parameter 
Intercept (ln γ0)   -0.3715  (0.046)     -1.2824 (0.081) 
                                           Goodness-of-fit Statistics 
Number of Observations      2587 2587 
-2 Log Likelihood 15165 9772.2 
AIC 15175 9782.2 
BIC 15204 9811.5 
MAD 5.689934 1.677349 
MSPE 683.4206 16.46669 

*MW = median + left shoulder width in ft; *RSW = average right shoulder width (both sides) in ft  

 

Crash Type Models  

 This section summarizes the models by collision types. Models were estimated for 

segments and intersections.  
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Models for Stop-Controlled Intersections 

This section presents general ADT models for intersections. Four collision type models 

were estimated for: 1) single-vehicle, 2) intersecting (angle), 3) same-direction, and 4) opposing 

direction. 

 

Single-Vehicle Crashes 

 Tables 6.35 and 6.36 summarize the modeling results for single-vehicle crashes for 3-

legged and 4-legged stop-controlled intersections. The functional form for the model is the 

following: 

1
0 TF βµ β=          (6.22) 

Table 6.35 Models for Single-Vehicle Crashes at 3-Legged SC Intersections 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -11.5575 (0.7673) -12.1798 (1.2312) 

FT (β1) 1.0349 (0.0785) 0.9519 (0.1248) 

Dispersion Parameter (α) 0.6407 (0.0887) 0.8378 (0.2279) 

Goodness-of-fit Statistics 
Number of Observations 378 378 
Deviance 389.0444 291.9866 
Pearson Chi-Square 416.5742 386.6110 
MAD 1.8104 0.6245 
MSPE 12.2547 1.0262 
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Table 6.36 Models for Single-Vehicle Crashes at 4-Legged TWSC Intersections 
(California Data)  

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -10.7050 (0.9420) -10.6699 (1.6752) 

FT (β1) 0.9501 (0.0972) 0.7995 (0.1726) 

Dispersion Parameter (α) 0.4522 (0.0954) 1.0102 (0.3582) 

Goodness-of-fit Statistics 
Number of Observations 264 264 
Deviance 286.8640 202.7639 
Pearson Chi-Square 256.7380 253.8210 
MAD 1.5273 0.6171 
MSPE 5.106 0.7531 

 

Intersecting Crashes 

Tables 6.37 and 6.38 summarize the models for intersecting crashes for 3-legged and 4-

legged stop-controlled intersections. The functional form for the model is the following: 

21
210
βββµ FF=         (6.23) 

 

Table 6.37 Models for Intersecting Crashes at 3-Legged SC Intersections (California Data) 
  Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -10.7594 (0.9599) -12.6563 (1.3603) 

F1 (β1) 0.6708 (0.0966) 0.7960 (0.1348) 

F2 (β2) 0.5288 (0.0508) 0.4419 (0.0658) 

Dispersion Parameter (α) 1.1842 (0.1497) 1.5375 (0.3011) 

Goodness-of-fit Statistics 
Number of Observations 378 378 
Deviance 365.9121 281.6272 
Pearson Chi-Square 540.8687 562.8762 
MAD 2.093 0.8237 
MSPE 14.7569 2.1318 
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Table 6.38 Models for Intersecting Crashes at 4-Legged TWSC Intersections 
 (California Data)  

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -7.8013 (1.2808) -8.2442 (1.5012) 

F1 (β1) 0.4580 (0.1342) 0.4198 (0.1559) 

F2 (β2) 0.4617 (0.0555) 0.4411 (0.0654) 

Dispersion Parameter (α) 1.5195 (0.1964) 1.5059 (0.2558) 

Goodness-of-fit Statistics 
Number of Observations 264 264 
Deviance 278.4834 244.0316 
Pearson Chi-Square 542.6259 502.1700 
MAD 3.2612 1.546 
MSPE 28.3496 6.0261 
 

Opposing Direction Crashes 

 Tables 6.39 and 6.40 summarize the modeling results for opposing direction crashes for 

3-legged and 4-legged stop-controlled intersections. The functional form for the model is the 

following: 

21
210
βββµ FF=         (6.24) 

Table 6.39 Models for Opposing Direction Crashes at 3-Legged SC Intersections 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -14.3796 (1.1890) -16.0467 (1.6730) 

F1 (β1) 1.0431 (0.1157) 1.1045 (0.1584) 

F2 (β2) 0.4245 (0.0560) 0.4171 (0.0790) 

Dispersion Parameter (α) 1.5713 (0.2363) 1.9430 (0.4454) 

Goodness-of-fit Statistics 
Number of Observations 378 378 
Deviance 312.5243 219.4241 
Pearson Chi-Square 446.9706 413.5255 
MAD 1.4319 0.5977 
MSPE 8.51 1.5423 
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Table 6.40 Models for Opposing Direction Crashes at 4-Legged TWSC Intersections 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -9.2451 (1.3211) -10.7639 (1.7688) 

F1 (β1) 0.4363 (0.1338) 0.5469 (0.1791) 

F2 (β2) 0.5696 (0.0622) 0.4972 (0.0842) 

Dispersion Parameter (α) 1.0679 (0.1918) 1.4260 (0.3654) 

Goodness-of-fit Statistics 
Number of Observations 264 264 
Deviance 241.0278 189.7150 
Pearson Chi-Square 361.0404 354.5546 
MAD 1.4129 0.7198 
MSPE 7.3987 1.6864 

 

Same Direction Crashes 

 Tables 6.41 and 6.42 summarize the modeling results for same direction crashes for 3-

legged and 4-legged stop-controlled intersections. The functional form for the model is the 

following: 

21
210
βββµ FF=         (6.25) 
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Table 6.41 Models for Same Direction Crashes at 3-Legged SC Intersections 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -16.0291 (0.8343) -15.3078 (1.2842) 

F1 (β1) 1.3807 (0.0831) 1.1985 (0.1277) 

F2 (β2) 0.3063 (0.0405) 0.1471 (0.0590) 

Dispersion Parameter (α) 0.8293 (0.1030) 0.6540 (0.1959) 

Goodness-of-fit Statistics 
Number of Observations 378 378 
Deviance 392.8642 279.4014 
Pearson Chi-Square 686.4972 397.1157 
MAD 2.9207 0.5849 
MSPE 36.4117 0.985 

 

Table 6.42 Models for Same Direction Crashes at 4-Legged SC Intersections 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -12.1658 (1.0188) -13.9293 (1.9287) 

F1 (β1) 0.9707 (0.1043) 1.0320 (0.1964) 

F2 (β2) 0.2911 (0.0445) 0.1835 (0.0793) 

Dispersion Parameter (α) 0.8034 (0.1245) 1.2827 (0.3999) 

Goodness-of-fit Statistics 
Number of Observations 264 264 
Deviance 275.0518 178.9540 
Pearson Chi-Square 388.6292 277.8590 
MAD 2.1794 0.5801 
MSPE 16.1487 0.9068 

 

Models for Segments  

This section presents general ADT models for segments. Three collision type models 

were estimated: 1) intersecting direction and turning, 2) single-vehicle and opposing direction, 

and 3) same direction. The models were estimated for undivided and divided segments. 
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Intersecting Direction and Turning Crashes�Undivided Segments 

Table 6.43 summarizes the modeling results for multi-vehicle crashes occurring at minor 

intersections located on undivided segments (3-legged and 4-legged). The functional form for the 

model is the following: 

1
0 1F βµ β=          (6.26) 

Table 6.43 Models for Intersecting Direction and Turning Crashes on Undivided Segments 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -10.8862 (1.2331) -14.8938 (2.3708) 

F1 (β1) 1.0463 (0.1364) 1.3017 (0.2580) 

Dispersion Parameter (α) 0.8456 (0.1815) 1.5090 (0.7053) 

Goodness-of-fit Statistics 
Number of Observations 321 321 
Deviance 271.9292 133.5401 
Pearson Chi-Square 432.8899 403.1290 
MAD 0.9435 0.2764 
MSPE 4.5183 0.3341 

 

Single-Vehicle and Opposing Direction Crashes�Undivided Segments 

 Table 6.44 summarizes the models for single-vehicle and opposing crashes on undivided 

segments. The functional form for the model is the following: 

1

10
ββµ F=          (6.27) 
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Table 6.44 Models for Single-Vehicle and Opposing Direction Crashes on Undivided 
Segments (California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -6.1959 (0.7936) -8.0949 (1.0468) 

F1 (β1) 0.6955 (0.0894) 0.7895 (0.1171) 

Dispersion Parameter (α) 0.7769 (0.0939) 0.9623 (0.1673) 

Goodness-of-fit Statistics 
Number of Observations 321 321 
Deviance 343.9405 296.2000 
Pearson Chi-Square 403.5599 358.1533 
MAD 3.1362 1.3684 
MSPE 39.6649 7.1471 

 

Same Direction Crashes�Undivided Segments 

Table 6.45 summarizes the models for same direction crashes on undivided segments. 

The functional form for the model is the following: 

1

10
ββµ F=          (6.28) 

Table 6.45 Models for Same Direction Crashes on Undivided Segments (California Data) 
  Total Injury 

Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -15.8125 (1.0344) -15.8310 (1.7839) 

F1 (β1) 1.6206 (0.1123) 1.4415 (0.1922) 

Dispersion Parameter (α) 0.5251 (0.1233) 0.5141 (0.3573) 

Goodness-of-fit Statistics 
Number of Observations 321 321 
Deviance 290.1979 179.6563 
Pearson Chi-Square 398.9027 355.8598 
MAD 1.1179 0.3317 
MSPE 3.9842 0.3102 
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Intersecting Direction and Turning Crashes�Divided Segments 

 Table 6.46 summarizes the models for crashes related to minor intersections located on 

divided segments (3-legged and 4-legged). The functional form for the model is: 

1
0 1F βµ β=          (6.29) 

 

Table 6.46 Models for Intersecting Direction and Turning Crashes on Divided Segments 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -10.5393 (0.9755) -10.1174 (1.3242) 

F1 (β1) 0.9079 (0.1006) 0.7229 (0.1356) 

Dispersion Parameter (α) 1.2441 (0.1858) 0.4014 (0.2540) 

Goodness-of-fit Statistics 
Number of Observations 755 755 
Deviance 611.5160 431.2496 
Pearson Chi-Square 1128.8914 1109.8216 
MAD 0.8331 0.289 
MSPE 2.2768 0.259 

 

Single-Vehicle and Opposing Direction Crashes�Divided Segments 

 Table 6.47 summarizes the models for single-vehicle and opposing crashes on divided 

segments. The functional form for the model is the following: 

1

10
ββµ F=          (6.30) 
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Table 6.47 Models for Single-Vehicle and Opposing Direction Crashes on Divided 
Segments (California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -6.7476 (0.4205) -7.2107 (0.5186) 

F1 (β1) 0.7341 (0.0438) 0.6722 (0.0537) 

Dispersion Parameter (α) 0.3573 (0.0317) 0.3059 (0.0425) 

Goodness-of-fit Statistics 
Number of Observations 755 755 
Deviance 852.0748 790.9872 
Pearson Chi-Square 873.7402 773.2152 
MAD 3.5566 1.5633 
MSPE 42.0779 7.3658 

 

Same Direction Crashes � Divided Segments 

 Table 6.48 summarizes the models for same direction crashes on divided segments. The 

functional form for the model is the following: 

1

10
ββµ F=          (6.31) 

Table 6.48 Models for Same Direction Crashes on Divided Segments 
(California Data) 

  Total Injury 
Parameter Estimate (Std Err) Estimate (Std Err) 

Intercept (ln β0) -16.6290 (0.6800) -15.0526 (0.9976) 

F1 (β1) 1.6681 (0.0694) 1.3229 (0.1008) 

Dispersion Parameter (α) 0.6112 (0.0592) 0.3486 (0.1121) 

Goodness-of-fit Statistics 
Number of Observations 755 755 
Deviance 771.9307 567.5936 
Pearson Chi-Square 1815.3283 1003.7265 
MAD 2.2515 0.5423 
MSPE 29.891 1.0422 
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In this work, the predicted values from general ADT models by crash type were 

compared with the values estimated from general ADT models used for intersections and 

segments. The comparison analysis results show that models by crash type should be used 

whenever crash types are of interest. They produced more accurate results than multiplying crash 

type ratios with the output of general ADT models for intersections and segments.  On the other 

hand, if the purpose is to estimate the number of crashes for an entire intersection, segment, or 

both, general ADT models should be used rather than summing up all the values estimated from 

general ADT models by crash type.  

  

Recommended AMFs 

 This section describes the recommended AMFs that can be applied with the baseline 

models described above. These AMFs were taken from the literature and vetted through the Joint 

NCHRP 17-25/17-29 Expert Panel associated with this project, estimated from the data collected 

in this work, or estimated from previous work conducted by the research team. The AMFs are 

grouped under intersections and segments. It is important to point out that very few AMFs exist 

for multilane highways, as reported by the Joint NCHRP 17-25/17-29 Expert Panel (Harkey et 

al., 2008). Thus, further work will be needed to estimate new AMFs and possibly recalibrate 

existing AMFs. Table 6.49 summarizes the geometric and operational features that were 

examined by the Joint Expert Panel.  
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Table 6.49 Geometric and Operational Features Investigated by the Joint Expert Panel 
Intersections Segments 

� Illumination 
� Turning Lanes 
� Signalization (i.e., phasing) 
� Approach Speed 
� Channelization 
� Traffic Control 
 

� Median Width and Type 
� Shoulder Type and Width 
� Shoulder Rumble Strips 
� Roadside Hazards, Clear 
Zone, and Slideslope 
� Posted and Operating Speed 
� Horizontal and Vertical 
Alignment 
� Access, Driveways, and 
Median Openings 

 

 Intersection AMFs 

The Joint NCHRP 17-25/17-29 Expert Panel convened for multilane rural roads did not 

develop any AMFs for intersections. Neither was it possible to use the limited data collected for 

this project to develop these. Some AMFs were developed for stop-controlled intersections by 

Washington et al. (2005) and these are documented below. The models from which the AMFs 

were derived are summarized in Appendix A. 

 The AMFs were derived using the third of the three methods listed in Section 5.5 and are 

given in Tables 6.50 and 6.51, respectively. These AMFs apply to total and injury crashes. 

Table 6.50 AMFs for 3-Legged Unsignalized Intersections 

AMF Total Injury 
Left-turning lane on major 
road  0.71 (One approach) 1 (One approach) 
Right-turning lane on major 
road  1 (One approach)     1 (One approach)     

Sight Distanced  1 1 

Intersection Angle 
1+(0.016*SKEWa)/ 
(0.98b+0.016*SKEW) 

1+(0.017*SKEWa)/ 
(0.52c+0.017*SKEW) 

a SKEW = intersection skew angle (degrees), expressed as the absolute value of the difference  
    between 90 degrees and the actual intersection angle. 

b 0.98 = mean of the observed TOTACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane. 

c 0.52 = mean of the observed INJACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane. 

d Sight Distance = if limited in any quadrant. 
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Table 6.51 AMFs for 4-Legged Unsignalized Intersections 

Total Injury 

AMF One Approach Both Approaches One Approach Both Approaches 
Left-turn lane on 
major road 1 1 0.86 0.74 
Right-turn lane on 
major road 1 1 1 1 

Sight Distanced 1 1 

Intersection Angle 
1+(0.053*SKEWa)/ 
(1.43b+0.053*SKEW) 

1+(0.048*SKEWa)/ 
(0.72c+0.048*SKEW 

a SKEW = intersection skew angle (degrees), expressed as the absolute value of the difference  
    between 90 degrees and the actual intersection angle 

b 0.43 = mean of the observed TOTACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane 

c 0.72 = mean of the observed INJACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane 

d Sight Distance = if limited in any quadrant. 
 

Segment AMFs 

The AMFs for estimating changes in safety for geometric design and traffic control 

features of roadway segments are presented below. All the AMFs affect changes in the total 

number of crashes occurring on the segment. Some AMFs have been adjusted based on the 

percentage of targeted number of crashes. 

 

AMFs for Lane Width  

An AMF for lane width has been adopted from the work of Harwood et al. (2003) and 

Harkey et al. (2008) via the joint NCHRP 17-25/17-29 Meeting. The AMF is described in Table 

6.52. The nominal condition for the lane width variable is 12 ft; for segments with traffic 

volumes equal to or greater than 2,000 vehicles per day; and the percentage of targeted crashes 

equal to 35%. For segments with smaller traffic volumes or a different percentage of targeted 

crashes, the reader is referred to Harkey et al. (2008) for obtaining additional information about 
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estimating a different AMF for lane width. This table shows that as the lane width narrows, the 

expected number of crashes increases. 

Table 6.52 AMF for Lane Width 
Lane Width (ft)  

9 10 11 12 

Four-lane 
undivided 

1.13 1.08 1.02 1.00 

Four-lane 
divided 

1.09 1.05 1.01 1.00 

 

AMFs for Paved Shoulder Width  

 An AMF for shoulder width on undivided segments has been adopted from the work of 

Harkey et al. (2008) via the Joint NCHRP 17-25/17-29 Meeting. The AMF for divided segments 

has been developed in this work and is based on the model documented in Table 6.34. Both 

AMFs are described in Table 6.53. For undivided segments, the nominal condition for the paved 

shoulder width variable is 6 ft; for segments with traffic volumes equal to or greater than 2,000 

vehicles per day; and the percentage of targeted crashes equal to 35%. For segments with smaller 

traffic volumes or a different percentage of targeted crashes, the reader is referred to Harkey et 

al. (2008) for obtaining additional information about estimating a different AMF for shoulder 

width. For divided segments, the nominal conditions are 12-ft lane width and 8-ft shoulder 

widths. There are no values beyond 8.0 ft, since the exact safety effects are unknown. 
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Table 6.53 AMF for Paved Shoulder Width 
Average Shoulder Width (ft)(both sides)  

0 2 4 6 8 

Four-lane 
undivided 

1.18 1.11 1.05 1.00 0.95 

Four-lane 
divided 

(right shoulders) 

1.18 1.13 1.09 1.04 1.00 

 

AMFs for Median Width  

 Table 6.54 summarizes AMFs for median width. This AMF has been adopted from the 

work of Miaou et al. (2005). The nominal baseline conditions are set for a median width equal to 

30 ft because existing guidelines usually recommend the installation of a median barrier for 

median widths below 30 ft. Baseline models for nominal conditions could be developed using 

the models described in Tables 6.33 and 6.34. The values below account for the total number of 

crashes occurring on the segment, but do reflect the fact that median width mainly affects 

median-related (20% of all crashes) and cross-median crashes (2% of all crashes). 

Table 6.54 AMF for Medians with Barriers 
Median Width 

(ft) 
AMF 

20 1.006 

30 1.000 

40 0.994 

50 0.988 

60 0.983 

70 0.978 

80 0.973 

90 0.968 

100 0.963 
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AMFs for Median Barrier 

 Table 6.55 describes AMFs for the presence of a concrete median barrier.  This AMF has 

been adopted from the work of Miaou et al. (2005). The nominal baseline conditions are for a 

median width equal to 30 ft, with the concrete barrier located in the middle of the median. 

Baseline models for nominal conditions could be developed using the models described in 

Tables 6.33 and 6.34. The AMFs apply to the total number of crashes occurring on the segment 

but do reflect the fact that this AMF mainly affects median-related crashes (20% of all crashes). 

Note that this AMF should be used only when the segment has a median barrier, but the width of 

the median is changed. 

Table 6.55 AMF for Median Barriers 
Median Width 

(ft) 
AMF 

20 1.012 

30 1.000 

40 0.988 

50 0.977 

60 0.967 

70 0.953 

80 0.944 

90 0.935 

100 0.957 
 

AMFs for Sideslopes  

 An AMF for the sideslope has been adopted from the work of Zegeer et al. (1988) and 

from the work of Harkey et al. (2008) via the Joint NCHRP 17-25/17-29 Meeting. The AMF is 

described in Table 6.56. The nominal conditions are for a sideslope 1:7 (vertical : horizontal) or 

flatter. 
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Table 6.56 AMF for Sideslope 
1:2 or 

Steeper 
1:4 1:5 1:6 1:7 or 

Flatter 
1.18 1.12 1.09 1.05 1.00 

 

AMFs for Horizontal Curves  

 Table 6.57 summarizes the AMF for estimating the safety effects of the number of 

horizontal curves per mile (curve density) on the segment. This AMF was produced from the 

models with covariates for the State of Texas (Table 6.27). The nominal conditions are for 

segments with no horizontal curves. This AMF does not address the exact design characteristics 

of horizontal curves.  

Table 6.57 AMF for the Number of Horizontal Curves per Mile 
Number of Horizontal Curves per Mile 

0 1 2 3 4 5 

1.00 1.07 1.14 1.22 1.31 1.40 

 

Cross-Validation Study 

This section presents the results of the cross-validation study for intersections and 

segments. The purpose of the cross-validation study was to examine how a model that was 

developed from data collected in one jurisdiction predicts crashes when it is applied in another 

jurisdiction. In order to evaluate the application of models to a new jurisdiction, data collected 

from the State of New York were used for this part of the study. For this cross-validation 

exercise, only general ADT models, described above, were used; the variables included in 

various models were not available in all datasets. Previous work has shown that ADT models 

provide better flexibility to be transferred from one jurisdiction to another (Washington et al., 

2005). The baseline models are not validated against other datasets because the required 
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information for the various base conditions is not always available and can therefore not be used 

in the cross-validation study. 

 The analysis was carried out in two steps. The first step consisted of re-calibrating the 

models estimated from the original datasets using the data collected from the second dataset (can 

be referred to as the data collected in the new jurisdiction). The models were recalibrated using 

the existing method proposed for the HSM (Hughes et al., 2005). In this method, a multiplicative 

factor is calculated by dividing the sum of observed crashes in the new jurisdiction by the sum of 

predicted crashes estimated from the original model. This factor is then added to the original 

model. The second step consisted of applying the newly recalibrated model to the second dataset 

and running various statistical tests for assessing their performance.   

 The effectiveness of the cross-validation study was performed using several goodness-of-

fit evaluation criteria. These criteria have been proposed by Oh et al. (2003) and Hauer and 

Bamfo (1997). They have been used by several researchers in highway safety (Lord and Persaud; 

2000; Wang and Abdel-Aty, 2007). The evaluation criteria include the following: 

• pearson product-moment linear correlation coefficients (PPMC); 

• mean absolute deviation (MAD); 

• mean square and mean square prediction errors (MSE and MSPE); and, 

• cumulative residuals (CURE) plots for major and minor road ADTs. 

The CURE plots are provided in Appendix D. 

 Table 6.58 shows the results for 3-legged signalized intersections. For this table, only the 

California models were used. With only fourteen 3-legged signalized sites, the sample size is 

probably not adequate for evaluating the California model applied to New York data. The results 
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shown in Table 6.58 and in the cumulative residual graphs indicate that the recalibrated model is 

performing satisfactorily for 3-legged signalized intersections. 

Table 6.58 Summary Results for 3-Legged Signalized Intersections 
New York Data 

14 Sites 
65 Total Crashes 
35 Injury Crashes 

Statistical 
Model 

Pearson’s 
Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction 

Error 

Maximum 
Deviation From 

CURE Plot – 
Major AADT 

Maximum 
Deviation 

From 
CURE Plot 

– Minor 
AADT 

MN-Total - - - - - 
CA-Total 0.53 2.59 11.20 8.53 8.99 
      
MN-Injury - - - - - 
CA-Injury 0.48 0.56 0.49 1.56 1.66 

Note: No model for Minnesota was successfully calibrated. 

 Table 6.59 shows the results for 3-legged stop-controlled intersections. This table shows 

that the recalibrated models from Minnesota and California perform very similarly although the 

Minnesota models have an advantage according to the CURE plots. The cumulative residual 

graphs are substantially within the standard deviation boundaries (see Appendix D). The 

maximum absolute deviations fall within approximately 10% of the total sum of crashes. These 

results indicate that both the recalibrated models are performing satisfactorily. 

Table 6.59 Summary Results for 3-Legged Unsignalized Intersections 
New York Data 

281 Sites 
673 Total Crashes 
396 Injury Crashes 

Statistical 
Model 

Pearson’s 
Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction 

Error 

Maximum 
Deviation From 

Cure Plot – 
Major AADT 

Maximum 
Deviation 

From Cure 
Plot – 
Minor 
AADT 

MN-Total 0.46 2.02 10.63 36.85 60.53 
CA-Total 0.46 2.04 10.70 67.97 49.84 
      
MN-Injury 0.24 0.66 0.87 12.80 13.15 
CA-Injury 0.33 0.67 0.91 19.01 18.30 
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Table 6.60 summarizes the results for 4-legged signalized intersections. With only 

eighteen 4-legged signalized sites, the sample size is perhaps not adequate for evaluating the 

Minnesota and California models applied to the New York data. Nonetheless, a comparison of 

goodness-of-fit measures shows that the recalibrated models from Minnesota and California 

perform very similarly. The cumulative residual graphs show significant deviations outside of 

the standard deviation limits, indicating that the recalibrated models are not performing as well 

as might be expected (see Appendix D). 

Table 6.60 Summary Results for 4-Legged Signalized Intersections 
New York Data 

18 Sites 
222 Total Crashes 
107 Injury Crashes 

Statistical 
Model 

Pearson’s 
Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction 

Error 

Maximum 
Deviation From 

Cure Plot – 
Major AADT 

Maximum 
Deviation 

From Cure 
Plot – 
Minor 
AADT 

MN-Total 0.27 6.28 67.32 51.44 45.83 
CA-Total 0.24 6.30 69.52 52.93 43.14 
      
MN-Injury -0.01 1.71 4.00 12.45 11.47 
CA-Injury - - - - - 

 

Table 6.61 summarizes the results for 4-legged stop-controlled intersections. A 

comparison of goodness-of-fit measures shows that the recalibrated models from Minnesota and 

California perform very similarly. However, an examination of the cumulative residual graphs 

show that the California models perform better when applied to the New York data. While the 

California models largely stay within the two standard deviation limits, the Minnesota models 

deviate further outside these limits (see Appendix D). The results indicate that the California 

model performs satisfactorily while the Minnesota model is less so, although perhaps still 

reasonable. 

 



 

 124

Table 6.61 Summary Results for 4-Legged Unsignalized Intersections 
New York Data 

71 Sites 
472 Total Crashes 
299 Injury Crashes 

Statistical 
Model 

Pearson’s 
Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction 

Error 

Maximum 
Deviation From 

Cure Plot – 
Major AADT 

Maximum 
Deviation 

From Cure 
Plot – 
Minor 
AADT 

MN-Total 0.47 4.47 45.19 72.26 78.04 
CA-Total 0.49 4.41 41.21 46.59 53.31 
      
MN-Injury 0.01 1.82 6.46 23.76 23.27 
CA-Injury 0.00 1.73 5.75 15.47 14.94 

 

Table 6.62 shows the results for 4-lane undivided segments. This table shows that the 

recalibrated general ADT model and the model developed using the Minnesota data performed 

better than the California model. This is reflected in the cumulative residual graphs, which show 

that the curve oscillates within the standard deviation limits for most of the ADT ranges (see 

Appendix D). These results indicate that both the recalibrated general ADT and the model from 

models are performing satisfactorily. 

Table 6.62 Summary Results for 4-Lane Undivided Segments 
New York Data 

199 Sites 
2048 Total Crashes (7 years) 

Statistical 
Model 

Pearson’s 
Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction Error 

Maximum 
Deviation From 

Cure Plot 
General ADT � 
Total 
(all states) 

0.874 0.711 1.564 18.529 

California � Total 0.757 0.936 12.308 49.310 
Minnesota � Total  0.865 0.687 1.326 11.947 

 

This section has shown that the recalibration procedure works relatively well if the 

statistical model to be recalibrated is a good candidate for transferring to the second jurisdiction. 

For this to work, it is important to test and ensure that the recalibrated statistical model, in fact, 
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performs well for a given jurisdiction, from which it was developed. It is also believed that the 

present exercise was applied in under extreme conditions where, for example, the definition of an 

intersection-related crash is different in each of the three jurisdictions.  

 

Chapter Summary 

This chapter described the modeling results for this study. The results were separated into 

three sections. The first section described the results for the statistical models produced for 

estimating the safety performance of rural multilane highways and intersections. Models were 

produced for intersections, undivided and divided highway segments, by crash type, and by crash 

severity. Above 80 models were estimated in this body of work. The models were assessed using 

various GOF and other statistical measures. The second section covered the AMFs produced 

from this work as well as the ones taken from various sources in the literature and the Joint 

NCHRP 17-25/17-29 Expert Panel members. Some of these AMFs have been vetted by the Joint 

NCHRP 17-25/17-29 Expert Panel assembled for the benefits of this project. The last section 

described the results of the cross-validation study. The study was carried out with data collected 

from the State of New York. The cross-validation study shows that some general ADT models 

transferred very well, as long as they work well in the jurisdiction where they were estimated. 

The next chapter summarizes the main activities of this research project and discusses avenues 

for further work. 
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CHAPTER VII 

Summary, Conclusions, and Recommendations 

 

The primary objective of this research was to develop a methodology for estimating the 

safety performance of various transportation elements considered in the planning, design, and 

operation of non-limited-access rural multilane highways. The first section of this Chapter 

describes the summary of the work performed in this research. The second section summarizes 

the proposed models for Chapter 9 of the HSM. The third section provides recommendations for 

further work. 

 

Summary of Project 

 There is a significant need to improve the explicit consideration of highway safety in 

making decisions on roadway planning, design, and operations. To receive appropriate 

consideration, safety needs to be dealt with quantitatively within the transportation planning and 

highway design processes. The lack of available tools is a deterrent to quantifying the safety of a 

transportation facility during the planning or highway design process. Recognizing this problem, 

a group of TRB committees has identified the need for more explicit and quantitative 

consideration of safety within the above-mentioned processes. This important need eventually 

led to the development of the forthcoming HSM. The Manual will serve as a tool to help 

practitioners make planning, design, and operations decisions based on safety. It will serve the 

same role for safety analysis that the HCM serves for traffic-operations analyses. The product of 

this research will provide the necessary tools for estimating the safety performance of multilane 

rural highways and will be incorporated into Chapter 9 of the HSM. 
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The literature review illustrated that the safety performance of multilane rural highways 

was seldom investigated, both for segments and intersections located on these facilities. 

Researchers have found though that multilane rural highway segments experience, on average, 

less crashes than two-lane rural highways for the same level of exposure. For intersections, only 

one study specifically focused on estimating the safety performance for these types of facilities. 

In short, the review indicated that there is a need to develop models and a methodology for 

estimating the safety performance of multilane rural highways.  

 Chapter III summarized the survey of selected DOTs. The objectives of this survey were 

to: a) determine whether the selected DOTs are currently using or developing statistical models 

to predict the safety performance of multilane rural highways; b) find out candidate input 

variables of interest to the survey participants; c) determine the availability of, and accessibility 

to various databases, such as crash data, geometric design information for segments and 

intersections, traffic flows for segments, and major and minor approaches. 

 The survey results showed that only two state agencies currently have a methodology for 

estimating the safety performance of multilane rural highways. The results also showed that 

crash data and segment files could be made available by all study participants. However, other 

databases, such as intersection databases, or access to georeferenced data, were not always 

available.  

The summary statistics for the data collected were presented in Chapter IV. The data 

were used for developing statistical models and AMFs for intersections and segments as well as 

for a cross-validation study to evaluate the recalibration procedure for jurisdictions other than 

those for which the models were estimated. The models and AMFs were estimated using four 

state databases: Texas, California, Minnesota, and Washington. New York data were used for the 
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cross-validation. The data included detailed information about geometric design characteristics, 

traffic flow, and motor vehicle crashes. 

 Chapter V described the modeling methodology proposed in this research. The proposed 

accident prediction methodology separated rural multilane road networks into segments and 

intersections. Specific models were developed for each transportation element. Three classes of 

models were proposed: models with covariates, baseline models applicable for specific values of 

covariates, and general ADT models. For the first model class (models with covariates), the 

relationship between crashes and geometric design features was captured via the covariates 

inside the statistical model. It was proposed that models be estimated for undivided and divided 

segments, as well as for most types of intersections, and where possible by injury severity and 

crash type. The models with covariates for divided segments were used to estimate baseline 

models for the HSM Chapter 9 by substituting baseline values for the variables in the model.  For 

the second model class, baseline models were directly estimated using data meeting baseline 

conditions that typically reflect the nominal conditions agencies most often used for designing 

segments and intersections. Several models proposed for the HSM Chapter 9 were calibrated 

using this approach. For the third model class, general ADT models were developed for the 

following transportation elements: 4-lane undivided segments, 3- and 4-legged signalized 

intersections, as well as 3- and 4-legged unsignalized intersections. These models reflect the 

average conditions found in the data for each transportation element. These models can be used 

for cases where the user has limited information about the geometric design features for the 

particular project under study. For 4-legged signalized intersections, the general ADT models 

were used as baseline models in HSM Chapter 9 as neither of the other approaches was feasible 

for developing baseline models for this entity type. Due to the small sample size, the general 
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ADT models for 3-legged signalized intersections were not recommended as baseline models for 

the chapter.  

 Chapter V also described the framework for developing the models. This framework, 

which is very important for developing sound and statistically valid predictive models, included 

four steps: (1) determine the modeling objective matrix; (2) establish the appropriate processes to 

develop the models; (3) determine the inferential goals, and (4) select the computation 

techniques and tools. All the models were developed using this modeling framework. The 

coefficients of the models were estimated using negative binomial (NB) regression methods, 

with the exception of models of crash counts by severity. The last section of the chapter 

described the various methods to be employed for estimating AMFs.  

 The modeling results for this study were presented in Chapter VI. The results were 

separated into three sections. The first section described the results for the statistical models 

produced for estimating the safety performance of rural multilane highways and intersections. 

Models were produced for the four types of intersections, undivided and divided highway 

segments, by crash type, and by crash severity. More than 80 models were estimated in this 

research or derived from recent relevant research. The models were assessed using various 

goodness-of-fit and other statistical measures. The second section covered the AMFs produced 

from this work as well as the ones taken from various sources in the literature and proposed by 

the Joint NCHRP 17-25/17-29 Expert Panel. The last section described the results of the cross-

validation study. The study was performed with the data collected from the State of New York. 

The cross-validation study showed that some models transferred very well, as long as they 

performed well in the jurisdiction where they were estimated. 
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Recommended Models for HSM 

 As described above, the series of models developed in this research will be incorporated 

into Chapter 9 of the HSM. The current predictive methodology used for the other chapters for 

estimating the safety performance of rural two-lane highways as well as urban and suburban 

arterials consists of using baseline models combined with the use of AMFs to account for safety 

effects of non-baseline design and traffic operations conditions. Distinct models were estimated 

for intersections and segments.  

The proposed methodology for estimating the safety performance of multilane rural 

highways is very similar to the ones used for the other two �predictive� chapters of the HSM. 

However, the research team provided additional tools for cases when baseline conditions are not 

available or data are limited. General ADT models and models with covariates can be used in 

cases where baseline conditions are not available. The proposed methodology also includes the 

use of general ADT models by crash type. This type of model could be used when the safety for 

specific crash types is of interest. Table 7.1 summarizes the recommended models for Chapter 9 

of the HSM.  
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Table 7.1 Recommended Baseline Models for Chapter 9 of the HSM 
Transportation Elements Approach Used 

Segments  
4-Lane Undivided 
 

Models estimated from data meeting baseline 
conditions (Table 6.23).  
General ADT crash type models also estimated 
(Tables 6.43 � 6.45). 

4-Lane Divided Models estimated from models with covariates by 
substituting variables meeting baseline conditions 
(Table 6.34). 

Intersections  
3-Legged Unsignalized Models estimated from data meeting baseline 

conditions (Table 6.2). 
4-Legged Unsignalized  Models estimated from data meeting baseline 

conditions (Table 6.1). 
3-Legged Signalized No models recommended due to small sample 

size. 
4-Legged Signalized General ADT models estimated (Table 6.4).   

 

Further Work  

 There are a few recommendations for further work. Firstly, there is a general need to 

develop more robust baseline models that are applicable to a wider range of variables and AMFs 

that are of interest to designers. To this end, the commitment of resources to special field data 

collection efforts should be considered. 

Further work should also be performed on the application of predictive models by crash 

severity. These models have shown to provide better estimates of crash counts for different 

severity levels than the models currently used for the HSM. Preliminary work has been done as 

part of this project (documented in Appendix E and in Park and Lord, 2007) and by others (e.g., 

Miaou and Song, 2005; Ma and Kockelman, 2006), but more research is needed in this area.  

 Another important topic is the difficulty created by considering intersections and 

segments separately in developing models for accident prediction. This approach has been 

proposed here and in other chapters of the HSM. By using this approach, each intersection or 



 

 132

segment is considered independent of each other. In reality, the transportation network should be 

viewed as an interactive system and should not be defined using artificial boundaries delimiting 

segments from intersections. Estimation problems are certain to occur at the boundaries. The 

research team initially proposed research activities on this topic. However, this topic was 

eventually removed from this research due to the unavailability of data for a large connected 

network. (Urban networks would be more suitable for this kind of research activities.) 

 The recalibration of the models developed for application in another jurisdiction was not 

specifically addressed in this research. It is understood that a parallel effort is underway as part 

of the HSM production contract (NCHRP 17-36) to develop and document a recalibration 

procedure that would be common to all three HSM Part III Chapters. 

 Finally, as documented in previous chapters, very few AMFs are available for multilane 

highways. Thus, further research should be done to fill this important gap. At the time this report 

was written, several research projects were already underway to improve this situation. 
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Prediction Models and AMFs for Stop-Controlled Intersections from FHWA Study 
(Washington et al., 2005) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE: Tables and some text are taken verbatim from the source report. 
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INTRODUCTION 
 
Two types of intersection models were addressed in the FHWA research (Washington et al., 
2005): 

Type III:  Three-legged stop controlled intersections with two lanes on minor and     
four lanes on major roads.  

Type IV:  Four-legged stop controlled intersections with two lanes on minor and  
four lanes on major roads.  

The models were originally calibrated by Vogt (1999). The FHWA model recalibration effort 
was focused on improving the Vogt crash models through use of an improved and expanded 
database and through lessons learned in the validation and recalibration activities in that effort.  
 
The data in support of that research were derived from three sources: 

1. The original data used for the calibration of the main models for total accidents were 
obtained from the researchers who developed those models. 

2. Highway Safety Information Systems (HSIS) data were obtained for additional years for 
the same intersections used in the calibration and for injury accidents for the original and 
additional years. 

3. An independent validation data set of intersections and their relevant crash, traffic, and 
geometric data in Georgia was specially assembled for this project.  

 
For each intersection type, the FHWA effort developed and/or refined three different sets of 
models. The first type is Annual Average Daily Traffic (AADT) Models, which represent base 
models for predicting crashes as a function of major and minor road AADT. The second type of 
model is Full Models.  These statistical models forecast crashes as a function of a relatively large 
set of independent variables. The third type of model is AMF. These models, better described as 
countermeasure correction factors, represent the researchers� best efforts to estimate the effect of 
geometric countermeasures on safety relative to base model predictions.  
 
VARIABLE ABBREVIATIONS   
 
TOTACC: Total number of accidents within 76.25 m (250 ft) of the intersection. 
INJACC: Total number of injury crashes within 76.25 m (250 ft) of the intersection. 
F1: Average daily traffic on major road (vehicles per day).  
F2: Average daily traffic on minor roads (vehicles per day).  
COMDRWY1: Commercial driveways on major roads within 76.25 m (250 ft) of the 
intersection center.  
COMDRWY2: Commercial driveways on minor roads within 76.25 m (250 ft) of the 
intersection center.  
DRWY1: Driveways on major roads within 76.25 m (250 ft) of the intersection.  
DRWY2: Driveways on minor roads within 76.25 m (250 ft) of the intersection.  
HAU: Intersection angle variable defined where the angle between the major and minor roads is 
measured from the far side of the minor road:  

• Three-legged intersections: Angle minus 90 if minor road is to the right of the major road 
in the increasing direction; 90 minus angle if minor road is to the left of the major road in 
the increasing direction. 
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• Four-legged intersections: (right angle � left angle)/2. 
HAZRAT1: Roadside hazard rating on major road within 76.25 m (250 ft) of the intersection 
center (from 1, least hazardous case, to 7, most hazardous case).   
HAZRAT2: Roadside hazard rating on minor road within 76.25 m (250 ft) of the intersection 
center (from 1, least hazardous case, to 7, most hazardous case). 
LTLN1S: Left-turn lane on major roads (0 = no, 1 = yes). 
MEDTYPE: Median type (0 = no median, 1 = painted, 2 = curbed, 3 = others). 
MEDWDTH1: Median width on major roads (feet).  
MEDWDTH2: Median width on minor roads (feet). 
PKLEFT: Peak left-turn percentage (percent). 
PKLEFT1: Peak left-turn percentage on major roads (percent). 
PKLEFT2: Peak left-turn percentage on minor roads (percent). 
PKTHRU1: Peak through percentage on major roads (percent). 
PKTHRU2: Peak through percentage on minor roads (percent). 
PKTRUCK: Peak truck percentage passing through the intersection (percent). 
PKTURN: Peak turning percentage (percent). 
PROT_LT: Protected left lane (0 = no, 1 = yes). 
SDR2: Right-side sight distance on minor road (feet). 
SPD1: The average posted speed on major roads in vicinity of the intersection (mph).  
SPD2: The average posted speed on minor roads in vicinity of the intersection (mph). 
 
 
SUMMARY STATISTICS OF RECALIBRATION DATA 

 

Table A1 Sources of Data 

No. of Sites 
No. of Total (Injury 

Accidents) 

State 

Years of 
Data 

Available 
Type 

III 
Type 

IV Type III Type IV 
California 
HSIS 1991-98 294 222 

2136 
(847) 

1956 
(899) 

California 
(Original) 1993-98 60 54 

427 
(196) 

478 
(268) 

Michigan  1993-97 24 18 
248 
(63) 

277 
(92) 

Georgia  1996-97 52 52 
124 
(56) 

222 
(104) 

Total  430 346 
2935 

(1162) 
2933 

(1363) 
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Table A2 Summary Statistics for Type III Sites 

Variables Frequency Mean Median Minimum Maximum 
TOTACC per year 136 1.35 0.80 0.00 10.60 
INJACC per year 136 0.55 0.33 0.00 4.00 
F1 136 13011 12100 2360 33333 
F2 136 709 430 15 9490 

MEDTYPE1 Total 
No Median 
Painted 
Curbed 
Other 

136
 69(50.7%)
45(33.1%)
14(10.3%)

8(5.9%)
  

N/A 
MEDWIDTH1 136 12.6 6 0 63 
HAU 136 1.3 0 -65 90 

HAZRAT1 Total 
1 
2 
3 
4 
5 
6 
7 

136
 16(11.8%)
58(42.6%)
26(19.1%)
25(18.4%)

8(5.9%)
2(1.5%)
1(0.7%) N/A 

HAZRAT2 Total 
1 
2 
3 
4 
5 
6 
7 

52
 0(0%)

2(4.0%)
20(40.0%)
16(32.0%)
6(12.0%)
6(12.0%)
2(4.0%) N/A 

COMDRWY1 136 1.5 0 0 14 
DRWY1 136 2.5 1.0 0.0 15.0 
NoCOMDRWY2 52 0.4 0 0 3 
DRWY2 52 1.0 1.0 0.0 6.0 
SPD1 136 52.5 55 30 65 
SPD2 136 33.7 35 15 55 
PKTRUCK 84 9.15 7.79 1.18 28.16 
PKTURN 84 6.68 4.28 0.27 53.09 
PKLEFT 84 3.28 2.16 0.13 25.97 
PKLEFT1 84 1.47 0.69 0.00 21.29 
PKLEFT2 84 55.31 60.29 0.00 100.00 
SD1 136 1515 2000 500 2000 
SDL2 136 1418 1510 40 2000 
SDR2 136 1428 1555 80 2000 
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Table A3 Summary Statistics for Type IV Sites 

Variables Frequency Mean Median Minimum Maximum 
TOTACC per YEAR 124 2.0 1.4 0.0 10.8 
INJACC per YEAR 124 0.9 0.5 0.0 5.7 
F1 124 12881 11496 3150 73799 
F2 124 621 430 21 2990 

MEDTYPE on major Total 
0: No Median 
1: Painted 
2: Curbed 
3: Other 

124 
70(56.5%) 
27(21.8%) 
22(17.7%) 

5(4.0%) 

 
 

N/A 

MEDTYPE on minor Total 
0: No Median 

52 
52(100%) N/A 

MEDWDTH1 124 16.1 6.5 0 60 
MEDWDTH2 52 0.0 0 0 1 

HAZRAT1 
1 
2 
3 
4 
5 
6 
7 

124
24(19.4%)
43(34.7%)
32(25.8%)
21(16.9%)

2(1.6%)
2(1.6%)

0(0%) N/A 

HAZRAT2 
1 
2 
3 
4 
5 
6 
7 

52
0(0%)

7(13.5%)
15(28.8%)
16(30.8%)
12(23.1%)

2(3.8%)
0(0%) N/A 

COMDRWY1 124 0.6 0 0 12 
DRWY1 124 1.3 0 0 15 
COMDRWY2 52 0.4 0 0 4 
DRWY2 52 0.8 0 0 6 
HAU 124 1.5 0 -50 55 
SPD1 124 55.6 55 25 65 
SPD2 124 34.7 35 25 55 
PKTRUCK 72 10.95 8.36 1.75 37.25 
PKTHRU1 72 94.41 96.95 67.77 100.00 
PKTURN 72 9.47 6.56 0.00 48.52 
PKLEFT 72 4.80 3.08 0.00 25.26 
PKLEFT1 72 2.78 1.51 0.00 13.96 
PKTHRU2 72 15.69 10.82 0.00 68.09 
PKLEFT2 72 38.89 36.66 0.00 100.00 
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AADT MODEL ESTIMATION RESULTS 
 
Recommended models were calibrated using all available data from the HSIS California 
database, the original sites from Minnesota and Michigan, and the Georgia validation data. 
Models were calibrated for data meeting specified base conditions listed in Table A5. 
 

Table A5 Base Conditions for AADT Models 

Variable 

Type  
III and IV 

Base 
Condition 

Type III 
Frequency 
(Percent) 

Type IV 
Frequency 
(Percent) 

Right turn on major No 253 (86.05) 164 (73.87) 

Right turn on minor No 268 (91.16) 176 (79.28) 

Left turn on major Yes 174 (59.18) 145 (65.32) 

Left turn on minor No 292 (99.32) 219 (98.65) 

Median on major Yes 212 (73.87) 148 (66.67) 

Terrain on major Flat 164 (55.78) 148 (66.67) 
Total sites meeting 
all base conditions  62 (21.09) 34 (15.32) 

Total sites  294 (100.00) 222 (100.00) 
 

Table A6 Number of Sites Used for Type III AADT Models 
Dataset All Sites Group B Base Condition 

Sites 
Percent (Base/All Sites) 

Michigan 1993�97 24 0 0.0 

Georgia 1996�97 52 14 27.0 

California 1991�98 218 48 22.0 

 
Table A7 Number of Sites Used for Type IV AADT Models 

Dataset All Sites Base Condition Sites Percent (Base/All Sites) 

Michigan 1993�97 18 0 0.0 

Georgia 1996�97 52 1 1.9 

California 1991�98 152 33 21.7 

 
Table A8 Summary Statistics for Type III Sites for AADT Models 

All Sites Base Condition Sites 

Variable Mean Median Minimum Maximum Mean Median Minimum Maximum 

TOTACC/yr 1.13 0.50 0.00 15.13 1.05 0.63 0 6.88 

INJACC/yr 0.45 0.25 0.00 5.13 0.57 0.38 0 4.13 

AADT1 17002 12909 1902 74500 18933 15433 6500 57731 

AADT2 449 206 1 9490 466 325 10 2500 
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Table A9 Summary Statistics for Type IV Sites for AADT Models 

All Sites Base Condition Sites 

Variable Mean Median Minimum Maximum Mean Median Minimum Maximum 

TOTACC/yr 1.6 1.0 0.0 10.8 1.3 0.6 0 5.4 

INJACC/yr 0.7 0.4 0.0 4.5 0.7 0.4 0 3.3 

F1 15477 12950 2192 69521 18385 13865 2367 43167 

F2 552 420 10 7400 345 186 11 2625 
 

Table A10 Parameter Estimates for Type III AADT Models 
(model form given by Eq. 2.2) 

Variable 
TOTACC 

(s.e., p-value) 
INJACC 

(s.e., p-value) 

 -12.1332 -15.2817 

Intercept (ln β0) (1.9357, 0.0000) (2.2629, 0.0000) 

F1 ( 1β ) 1.0941 1.3316 
 (0.1762, 0.0000) (0.2081, 0.0000) 

F2 ( 2β ) 0.2544 0.2648 

 (0.0636, 0.0001) (0.0717, 0.0002) 

K 0.3125 0.3074 
Pearson product-moment 
correlation coefficient 0.67 0.63 

MPB/yr 0.02 0.01 

MAD/yr 0.60 0.32 

 
Table A11 Parameter Estimates for Type IV AADT Models 

(model form given by Eq. 2.2) 

Variable 
TOTACC 

(s.e., p-value) 
INJACC 

(s.e., p-value) 

Intercept (ln β0) 
-14.9469 

(1.5082, 0.0000) 
-15.1858 

(1.7442, 0.0000) 

1.2826 1.2513 F1 ( 1β ) 

 
(0.1398, 0.0000) (0.1688, 0.0000) 

F2 ( 2β ) 0.4671 0.4535 

 (0.0779, 0.0000) (0.0811, 0.0000) 

K 0.2070 0.1486 
Pearson product-moment 
correlation coefficient 0.90 0.89 

MPB/yr 0.00 -0.01 

MAD/yr 0.48 0.29 
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MODELS WITH COVARIATES 
 
For these the main model is judged best from the goodness-of-fit measures. Variant 1 is the next 
best alternative. 
 

Table A12 Parameter Estimates for TOTACC Full Model: Type III 

(model form given by Eq. 2.2) 
Main Model Variant 1 

Variables 
Coeff. 

(s.e., p-value) 
Coeff. 

(s.e., p-value) 

Intercept (ln β0) 
-10.1914 

(1.5232,0.0000) 
-9.9214 

(1.5100,0.0000) 

F1 ( 1β ) 0.8877 
(0.1666,0.0000) 

0.8509 
(0.1665,0.0000) 

F2 ( 2β ) 0.3228 
(0.0585,0.0000) 

0.2972 
(0.0590,0.0000) 

COMDRWY1 
0.0681 

(0.0281,0.0154) 
0.0912 

(0.0276,0.0010) 

VEI1 
0.1081 

(0.0556,0.0519) 
0.1044 

(0.0523,0.0461) 

HAU 
0.0101 

(0.0059,0.0861) 
0.0088 

(0.0054,0.1014) 

MEDWDTH1 
-0.0106 

(0.0060,0.0760) 

MEDTYPE1  
(painted on main road) 

-0.3209 
(0.1771,0.0700) 

DRWY1 N/A3 

 

K 
0.4229 

(0.1064,0.0001) 
0.4552 

(0.1109,0.0000) 

Pearson product-moment 
correlation coefficients 0.70 0.70 

MPB/yr 0.09 -0.02 

MAD/yr 0.84 0.88 
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Table A13 Parameter Estimates for INJACC Full Models: Type III 

(model form given by Eq. 2.2) 
Main Model Variant 1 

Variables 
Coeff. 

(s.e., p-value) 
Coeff. 

(s.e., p-value) 

Intercept (ln β0) 
-10.6443 

(2.0474,0.0000) 
-10.4453 

(2.0845,0.0000) 

F1 ( 1β ) 0.8498 
(0.2097,0.0001) 

0.8260 
(0.2146,0.0001) 

F2 ( 2β ) 0.2188 
(0.0949,0.0212) 

0.2460 
(0.0901,0.0063) 

COMDRWY1 
0.0627 

(0.0353,0.0756) 
0.0607 

(0.0346,0.0797) 

HAZRAT1 
0.1889 

(0.0923,0.0407) 
0.1897 

(0.0930,0.0412) 

HAU 
0.0163 

(0.0053,0.0021) 
0.0168 

(0.0054,0.0019) 

PKTRUCK 
-0.0253 

(0.0135,0.0605) 
-0.0331 

(0.0186,0.0762) 

PKTURN 
0.0254 

(0.0135,0.0592)  

PKLEFT  
0.0333 

(0.0188,0.0758) 

K 
0.5102 

(0.1426,0.0003) 
0.5178 

(0.1437,0.0003) 
Pearson product-moment 
correlation coefficients 0.66 0.64 

MPB/yr -0.05 -0.14 

MAD/yr 0.43 0.47 
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Table A14 Parameter Estimates for TOTACC Full Models: Type IV 

Main Model Variant 1 

Variables 
Coeff. 

(s.e., p-value) 
Coeff. 

(s.e., p-value) 

Intercept (ln β0) 
-7.4713 

(1.8930,0.0001) 
-7.4350 

(1.6933,0.0000) 

F1 ( 1β ) 0.7350 
(0.1849,0.0001) 

0.7193 
(0.1722,0.0000) 

F2 ( 2β ) 0.2390 
(0.0926,0.0099) 

0.2586 
(0.0975,0.0080) 

SDR2 
-0.0003 

(0.0001,0.0403) 
-0.0005 

(0.0001,0.0018) 

PKTRUCK 
-0.0479 

(0.0110,0.0000)  

PKTHRU2 
0.0249 

(0.0085,0.0034) 
0.0154 

(0.0082,0.0591) 

PKLEFT 
0.0229 

(0.0118,0.0525)  

PKLEFT1 
-0.0158 

(0.0083,0.0565) 
MEDTYPE1  
(painted on major roads) 

-0.4027 
(0.2084,0.0533) 

MICHIGAN INDICATOR 
0.4823 

(0.2645,0.0683) 

LTLN1S (0 or 1) 

 

 

K 
0.4001 

(0.0958,0.0000) 
0.4382 

(0.0965,0.0000) 
Pearson product-moment 
correlation coefficients 0.77 0.75 

MPB/yr 0.12 0.28 

MAD/yr 1.16 1.20 
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Table A15 Parameter Estimates for INJACC Type IV: Full Models 

Main Model Variant 1 

Variables 
Coeff. 

(s.e., p-value) 
Coeff. 

(s.e., p-value) 

Intercept (ln β0) 
-7.3927 

(2.1279,0.0005) 
-7.9801 

(2.0870,0.0001) 

F1 ( 1β ) 0.5008 
(0.2186,0.0220) 

0.5670 
(0.2145,0.0082) 

F2 ( 2β ) 0.3027 
(0.1341,0.0240) 

0.3452 
(0.1213,0.0044) 

SPD2 
0.0289 

(0.0145,0.0465) 
0.0262 

(0.0149,0.0795) 

PKTRUCK 
-0.0520 

(0.0127,0.0000) 

PKLEFT1 
0.0523 

(0.0128,0.0000) 

 

SDR2 
-0.0003 

(0.0002,0.0420) 
MEDTYPE1  
(painted on major roads) 

 
-0.5299 

(0.2560,0.0385) 

K 
0.4671 

(0.1296,0.0003) 
0.5400 

(0.1345,0.0001) 
Pearson product-moment 
correlation coefficients 0.71 0.70 

MPB/yr 0.05 -0.05 

MAD/yr 0.65 0.67 
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ESTIMATION OF ACCIDENT MODIFICATION FACTORS 

AMFs Derived from Full Models  
One approach to deriving AMFs was to apply a model using the estimated parameter values from 
only statistically significant variables in accident prediction models. This approach suffers from 
correlation between geometric variables and traffic, and the difference in accident experience 
between sites is possibly due to the substantial unexplained variation resulting from omitted 
factors. Nevertheless, AMFs derived in this manner from the full models in Tables A12 to A15 
are listed in Table A16. 

 

Table A16 AMFs Derived from Type III, IV, and V Full Models 

Type III Type IV 
 

AMF Total Injury Total Injury 

COMDRWY1 
Exp 
(0.0681COMDRWY1) 

exp 
(0.0627COMDRWY1) 

VEI1 exp(0.1081VEI1) Not calibrated 

HAU exp(0.0101HAU) exp(0.0163HAU) 

MEDWIDTH1
exp 
(-0.0106MEDWDTH1) 

MEDTYPE1a 0.73 Not calibrated  

HAZRAT1 exp(0.1889HAZRAT1) 

  
  
Not calibrated 

  
 
Not calibrated 2 

PKTRUCK 
exp(-0.0253PKTRUCK) exp(-0.0479PKTRUCK) exp(-0.0520PKTRUCK) 

PKTURN exp(0.0254PKTURN) Not calibrated 

PKTHRU2 
exp(0.0249PKTHRU2) 

PKLEFT exp(0.0229PKLEFT) 

Not calibrated 

PKLEFT1 Not calibrated exp(0.0523PKLEFT1) 

SDR2 exp(-0.0003SDR2) 

LIGHT 

HEICOM 

HEI2 

                                         
 
 
 
 
 
Not calibrated Not calibrated  

 Not calibrated 

 
 
Not calibrated 

                                                       a Medtype1: Painted  
 

198 
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AMFs Derived from Regression Models  
 
The AMFs were derived using the third of the three methods listed in Section 5.5 and are 
given in Tables A17 and A18. These AMFs apply to total accidents and total injury 
accidents. 

 

Table A17 AMFs for Type III Sites 

AMFs Recalibrated (TOTACC) Recalibrated (INJACC) 

Left lane on major road  0.71 (One approach) 1 (One approach) 

Right lane on major road  1 (One approach)     1 (One approach)     

Sight distance 1 1 

Intersection angle 
1+(0.016*SKEWa)/ 
(0.98b+0.016*SKEW) 

1+(0.017*SKEWa)/ 
(0.52c+0.017*SKEW) 

a SKEW = intersection skew angle (degrees), expressed as the absolute value of the difference  
    between 90 degrees and the actual intersection angle 

b 0.98 = mean of the observed TOTACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane 

c 0.52 = mean of the observed INJACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane 

 

Table A18 AMFs for Type IV Sites 

Recalibrated (TOTACC) Recalibrated (INJACC) 

AMFs One Approach Both Approaches One Approach Both Approaches 
Left-turn lane on 
major road 1 1 0.86 0.74 
Right-turn lane on 
major road 1 1 1 1 

Sight Distance 1 1 

Intersection Angle 
1+(0.053*SKEWa)/ 
(1.43b+0.053*SKEW) 

1+(0.048*SKEWa)/ 
(0.72c+0.048*SKEW 

a SKEW = intersection skew angle (degrees), expressed as the absolute value of the difference  
    between 90 degrees and the actual intersection angle 

b 0.43 = mean of the observed TOTACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane 

c 0.72 = mean of the observed INJACC accidents per year of the sites meeting no angle, no right  
lane, and presence of left lane 

 
Comparison of AMFs 
 
A comparison of AMFs from the two methods is shown in Tables 19 and 20. For Type III 
and IV intersections, intersection angle (SKEW) was estimated as significant in the 
regression models. Right-turn lanes on major roads provided significant AMFs for Type 
IV intersections.  
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Table A19 Comparison of Type III and IV AMFs for TOTACC 

AMFs Derived From Full Models AMFs Derived From Regression Models 
AMF 

 Type III Type IV Type III Type IV 

SKEW exp(0.010SKEW)  
1+(0.016*SKEW)/ 
(0.98+0.016*SKEW) 

1+(0.053*SKEW)/ 
(1.43+0.053*SKEW) 

RT MAJ 1 1 

LT MAJ 0.71 1 

SIGHT DISTANCE 

Not calibrated 

1 1 

COMDRWY1 
exp 
(0.0681COMDRWY1) 

VEI1 exp(0.1081VEI1) 

MEDWIDTH1 
exp 
(-0.0106MEDWDTH1) 

MEDTYPE1 0.73 

Not calibrated 
  
  
  

PKTRUCK 
exp 
(-0.0479PKTRUCK) 

PKTHRU2 
exp 
(0.0249PKTHRU2) 

PKLEFT 
exp 
(0.0229PKLEFT) 

SDR2 

Not calibrated 
  
  
  
  
  exp(-0.0003SDR2) 

 
Not calibrated 

 
Not calibrated 
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Table A20 Comparison of AMFs for INJACC 

AMFs Derived From Full Models AMFs Derived From Regression Models 

AMF Type III Type IV Type III Type IV 

SKEW exp(0.0163SKEW) 
1+(0.017SKEW)/ 
(0.52+0.017SKEW) 

1+(0.048SKEW)/ 
(0.72+0.048SKEW) 

RT MAJ 1 
0.86 one approach, 
0.74 both approaches 

LT MAJ 1 1 

RT MIN 1 1 

SIGHT DISTANCE 1 1 

HI 

DRWY1 

MEDIAN 

Not calibrated  
  
  
  
  
  
  

COMDRWY1 
exp 
(0.0627COMDRWY1) 

HAZRAT1 
exp 
(0.1889HAZRAT1)  

Not calibrated  
  
  
  
  
  
  
  

PKTRUCK 
exp 
(-0.0253PKTRUCK) 

exp 
(-0.0520PKTRUCK)  

PKTURN exp(0.0254PKTURN) Not calibrated 

PKLEFT1 
exp 
(0.0523PKLEF) 

SDR2 

LIGHT 

HEI2 

Not calibrated 
Not calibrated 

Not calibrated Not calibrated 
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SURVEY ON THE PREDICTION OF THE SAFETY PERFORMANCE FOR 
MULTILANE RURAL HIGHWAYS 

NCHRP Project 17-29 
 

 
You are being asked to participate in this short survey because your agency has 

shown, through a previous survey conducted for NCHRP 17-26 (Predicting the Safety 
Performance of Urban and Suburban Arterials) an interest in the development and 
application of the Highway Safety Manual (HSM). In addition, your agency has indicated 
that relevant databases are available for research purposes. In NCHRP Project 17-29, the 
Texas Transportation Institute (TTI) is leading an effort to develop a methodology to 
predict the safety performance of multilane rural highways.  
 
 The intent of the survey is to determine a more accurate evaluation of input 
variables available in your agency as well as the potential input variables that would be of 
interest for predicting the safety performance of rural multilane highways located within 
your jurisdiction. A definition of a rural multilane highway is provided below.  
 

The Transportation Research Board (TRB) and the National Cooperative 
Highway Research Program (NCHRP), which is managed by TRB and cosponsored by 
the Federal Highway Administration (FHWA) and the American Association of State 
Highway and Transportation Officials (AASHTO), are working to create the Highway 
Safety Manual (HSM). The HSM will organize knowledge about highway safety for 
application by highway agencies and will include procedures to predict the quantitative 
safety performance of highways and streets, such as the Highway Capacity Manual 
(HCM) predicts the quantitative operational performance of highways and streets. A 
prototype HSM Chapter, for the prediction of the safety performance of two-lane rural 
roads, is available in Appendix C of 
http://gulliver.trb.org/publications/nchrp/nchrp_w62.pdf.  

 
The results you provide to this survey are critical in the development of the HSM. 

Thus, your responses to the following questions are greatly appreciated.  
 
 
CURRENT SAFETY PREDICTION METHODS 
 

The following definition of rural multilane highways guides this research and 
should also help to identify the specific roadway segments of interest in this survey: 
 

The research team has decided to use the guidelines proposed by FHWA and 
AASHTO. These guidelines define rural areas as places outside the boundaries of urban 
places where the population is less than 5,000 inhabitants. Consequently, a highway for 
the NCHRP 17-29 project will be classified as rural when it is located outside the city 
limits of the urban agglomeration above 5,000 inhabitants. Given this definition, we 
greatly appreciate if you could answer the questions below. 
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1.  Does your agency use, are you developing, any statistical methods or other 
methods to predict or estimate the safety performance of multilane rural 
highways? 

 
 ___YES___NO 

If YES, please  
(a) Indicate what the safety performance estimates or predictions are used for 

 
 
 

(b) describe or attach a copy of your agency�s models or predictive methodology: 
 
 
 
INPUT VARIABLES OF INTEREST TO PREDICT THE SAFETY 
PERFORMANCE OF MULTILANE RURAL HIGHWAYS 
 
 One of the main purposes of the proposed methodology is to enable designers and 
planners to quantify the effects of relevant design and operational variables on safety 
performance in order to assess the safety implications of design decisions or planned 
improvements. In developing the predictive methodology for estimating the safety of 
multilane rural highways, candidate input variables will be selected based on known 
relationships of specific variables to safety, relationships developed as part of this 
research, and the priorities of potential HSM users. We would appreciate your assessment 
of which design, weather, and operational variables should be included in the safety 
performance prediction process. Please rate the following variables in terms of their 
potential value for your agency for inclusion in the predictive methodology [5=high 
priority; 1=low priority]. Please use the full range of ratings from 1 to 5 so that your 
ratings are useful for setting overall priorities; if your assessment is that a particular input 
variable is not needed in the first edition of the HSM, please use a rating of 1.  In 
assigning your ratings, please DO NOT consider the availability of data in your agency�s 
databases. 
 
Candidate Input Variables for Rural Multilane Roadway Segments 
 

_____  delineation 
_____  design or posted speed 
_____  grades 
_____  horizontal curves 
_____  illumination 
_____  land-use adjacent to traveled-way 
_____  lane widths 
_____  median type 
_____  median width 
_____  number and type of median openings 
_____  number and type of driveways 
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_____  number of through lanes 
 _____  pavement friction 

_____  raised pavement markers 
_____  roadside design/clear zones/roadside objects 
_____              roadside distractions (e.g. billboards, signage, etc.) 
_____  shoulder width/curb type 
_____  shoulder rumble strips 
_____  spacing between driveways 
_____  speed variance of vehicular traffic 
_____  traffic volume (AADT) (veh/day) 
_____  traffic volume in peak period (veh/hr) 
_____  traffic volume for different time periods (average veh/hr) 
_____  traffic volumes for individual driveways 
_____  vehicle mix (e.g., percent trucks) 
_____  vehicle speed (average for different time periods) 
_____  vertical curvature 
_____  wet pavement 
_____  ice on pavement 
_____  snow on pavement 
_____  visibility restrictions (e.g. fog, glare, etc.) 
 

Candidate Input Variables for At-Grade Intersections 
 

_____  approach speed (observed) 
_____  approach speed (posted or design speed) 
_____  horizontal alignment of intersection approaches 
_____  illumination 
_____  intersection sight distance 
_____  intersection skew angle 
_____  lane widths on intersection approaches 
_____  level of service (LOS) (only at signalized intersections) 
_____  median type/presence of median 
_____  number of intersection legs 
_____  number of through lanes on intersection approaches 
_____  number and length of added through lanes at intersections 
_____  presence/number of left-turn lanes 
_____  presence of right-turn lanes 
_____  shoulder/curb type on intersection approaches 
_____  shoulder/curb width on intersection approaches 
_____  signal phasing (e.g., left-turn phasing) 
_____  signal timing 
_____  signal visibility 
_____  spacing between intersection and nearby driveways 
_____  type of traffic control 
_____  traffic volumes (AADTs) for major- and minor-road legs (AADTs)  
_____  type of left-turn channelization (painted vs. raised curb) 



 162

_____  vehicle mix (e.g., percent trucks) 
_____  weather variables as previous 

 
2. Are there other potential input variables, not listed above, that you think should 

have a high priority for inclusion in the safety prediction methodology for 
multilane rural highways? 

 
DATA AVAILABILITY 
 
The data availability questions are directed specifically to representatives of public 
agencies that operate and maintain roadways.  
 
3. For multilane rural highways under your agency�s jurisdiction, does your agency 

have computerized files of: 
 

Crash data (i.e., records for each individual  ___YES___NO 
crash) 

 Roadway segment inventory data (i.e., geometrics  ___YES___NO 
and traffic control for roadway segments 
between intersections) 

 
If YES, approximately how many miles of  _______ miles 

multilane highways is under your 
organization�s jurisdiction?  
 

Intersection inventory (i.e., geometrics and  ___YES___NO 
and traffic control for each 
individual intersection) 

 
 If YES, could you provide approximately how _______ 

many signalized and unsignalized intersections 
are part of the multilane rural highways? 

 
4.  In your agency�s computerized accident data, can driveway-related crashes be 

distinguished from other non-intersection crashes? ___YES___NO 
 
5. Do your agency�s computerized data files use a common location reference 

system to allow direct linking of: 
 

Individual crash records to the inventory data ___YES___NO 
 for the roadway segment on which the 

accident occurred 
 

Individual crash records to the inventory data ___YES___NO 
for the intersection at which the crash 
or the intersection to which the crash is related 
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6. Can your agency�s computerized databases provided georeferenced data (i.e., the 

longitude and latitude coordinates based on the Geographical Information 
System)? 

 
Crash data (i.e., records for each individual  ___YES___NO 

crash) 
Road inventory (i.e., location of intersections, ___YES___NO 

bridges, land-use characteristics, etc.) 
 
7.  Can your agency provide vehicular traffic information for rural signalized and 

unsignalized intersections? 
 
 Major approaches (i.e., approaches located  ___YES___NO 

on the main highway under your jurisdiction) 
 

 Minor approaches (i.e., approaches connected ___YES___NO 
to the main highway under your jurisdiction) 

 
8. Can your agency provide before-after crash and traffic data for a significant 

number of rural multilane segments or intersections sites in which any of the 
candidate variables were changed (e.g. a left turn lane was added or shoulders 
were widened)? If so, please identify those variables and provide approximate 
details (if possible) on number of segments/miles or intersection sites and number 
of before/after years of data. 

 
9. Does your agency have access to daily weather related information, such as rain, 

ice, and snow events? 
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CONTACT PERSON 
 
10. May we have the name of an individual in your agency that we can contact for 

further information, if necessary? 
 
Name: ____________________________________________________ 
 
Title: _____________________________________________________ 
 
Agency: ___________________________________________________ 
 
Address: ___________________________________________________ 
 
 _____________________________________________________ 
 
 _____________________________________________________ 
 
Phone: _______________________ Fax: ________________ 
 
E-mail: ____________________ 
 
Thank you very much for your assistance. Please send the completed survey to: 
 
 
Dominique Lord 
Associate Research Scientist 
Texas Transportation Institute 
3135 TAMU 
Texas A&M University 
College Station, TX 
77843-3135 
 
E-mail: d-lord@tamu.edu 
 
 
 
 
 
 
 
 
 
 
 
 



 165

 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX C 
 

Expert Panel Review: Critique and Assessment of the Expert Panel Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This appendix was originally prepared by Dr. Simon P. Washington. 
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Purpose of Critique and Assessment 
Expert panels have been used extensively in the development of the Highway Safety 
Manual (HSM). These panels have been used to extract useful research information from 
highway safety experts, research that is often inconsistent in the literature, that is 
relatively scant, or that for one reason or another was not conducted under ideal 
conditions. While the panels have been used to recommend agendas for new and 
continuing research, their primary role has been in the development of Accident 
Modification Factors (AMFs)�quantitative relationships between highway safety and 
various highway safety treatments.  Because the expert panels derive quantitative 
relationships and because these relationships have potentially enormous impact on future 
highway safety investment decisions, the expert panel process and its viability needs to 
be assessed. The need for this review should not come as a surprise, as scientific 
evaluation of analytical and quantitative methods employed in highway safety is a routine 
activity employed in the profession. 
 
The remainder of this report first provides a background of the role that expert panels 
serve in the development of the HSM, how they have been used, and some background 
on expert panels used in other transportation applications. The next section describes the 
review process in detail, so that the interested reader can understand how these expert 
panel reviews are conducted and learn how decisions are derived within these expert 
panels. Then, important questions surrounding the accuracy and precision of expert panel 
findings are discussed, serving as a critique of the expert panel process. Conclusions and 
Recommendations identify areas of potential improvement to be considered in future 
expert panels and highlight strengths of the existing process.  
 

Background 
The NCHRP 17-29 research program focused on the scientific evaluation of an array of 
crash prediction methodologies and analytical methodologies currently being integrated 
into mainstream products that will be used to evaluate and improve highway safety. Due 
to the extreme importance of these methods on highway safety and ultimately human 
lives, it is vital to scrutinize and evaluate methodologies employed in the profession. One 
procedure that has received little attention in the literature that plays a fairly significant 
role in highway safety is the expert panel. Expert panels have been and are being used 
extensively in various research programs related to and in support of the HSM 
development, and deserve the careful scrutiny that other methods receive.  
 
The AMF is a quantitative measure of safety that is integral to the HSM and to the 
Interactive Highway Safety Design Model (IHSDM). The AMF is a safety performance 
factor or function that relates the safety of a highway with a specific countermeasure or 
treatment. The general analytical approach that incorporates the AMF makes use of a 
�baseline� or �base� model which predicts crashes for sites of interest (e.g., rural roads, 
intersections of rural roads, multi-lane highways, etc.) based on exposure (AADT or 
VMT) and perhaps one or two other factors (e.g., whether the facility is in an urban or 
rural area). A calibration factor is applied to correct for differences across regions (e.g., 
cities, states) so as to make predictions applicable to the local jurisdiction. Crash 
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modification factors or functions are then applied to obtain estimates of the reduction in 
crashes after installation of a particular countermeasure or treatment. In simplified form, 
the AMF approach is given as: 
 
 CrashesAfter = CrashesBaseline x AMFCountermeasure i x Regional Calibration Factor,  
 
where CrashesAfter are the predicted crashes at a site (after application of countermeasure 
i) given the product of baseline predicted crashes, the expected reduction in crashes from 
countermeasure i, and a regional calibration factor. The AMF can be a simple factor (e.g., 
0.80) or be a function of other variables such as AADT. Of course, different 
countermeasures will have different effects on crashes, and may have effects that are 
limited to certain crash types such as rear-end crashes, angle crashes, etc. Thus, the AMF 
can range from a simple factor to a function by crash type. For example, the expected 
reduction in crashes as a result of installation of a cable median barrier device may be a 
function of average vehicle speeds and may apply only to cross-median crashes.  
 
There is solid support for the AMF and AMF approach, as described in Lyon et al. 
(2003): 
 

�After detailed examination of the data obtained across several states and 
time periods, the approach proposed in the IHSDM appears to be a sound 
and defensible approach for forecasting crashes.  The approach offers two 
considerable technical advantages over conventional �full model� 
approaches for forecasting crashes. First, the often high intercorrelation of 
explanatory variables with traffic volumes renders isolation of the safety 
effects of individual variables difficult at best, leading to inconsistent 
predictions. The algorithm approach skirts this issue by allowing only 
traffic volumes to be statistically associated with crashes, and by using 
AMFs derived independently of the prediction model. Second, corrections 
for driver populations, weather, environmental, and other factors, which 
are often hard to capture and are inter-correlated as well as correlated with 
traffic volume, are treated with a correction factor.� 

 
The conclusions by Lyon et al. arose from a detailed and extensive analysis of the safety 
effects of various geometric and traffic factors for rural intersections across several states. 
With additional details provided in a companion study (Oh et al., 2003), the authors 
identified omitted known variables, omitted unknown variables, site-selection bias, 
countermeasure-selection bias, poorly measured and surrogate variables, and model 
functional forms as factors that contribute to the difficulty in estimating suitable �full� 
regression models that related traffic and geometric features to safety, further bolstering 
support for base models with AMFs.  
 
The current practice involves the estimation of AMFs through the use of expert panels or 
through expert opinions. The use of expert opinions in transportation safety applications 
is not new.  Dissayanake and Lu (1999) relied on expert opinions to assess the safety 
needs of special populations. European experts were convened to determine the most 
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effective and reliable air traffic management system for improving safety, operational, 
and environment performance (Zografos and Giannouli, 2001). The required 
characteristics of cockpit weather information systems for NASA�s Aviation Safety 
Program, including some intelligent transportation system technologies, were derived in 
part from the collection of expert opinions (Sireli et al., 2002). Fukuoka (2002) developed 
a unified reliability and analysis environment for assessing European railway network 
safety using expert opinions and information about failures. Recently and perhaps of 
most relevance to this research, Harwood et al. (2000) developed algorithms intended for 
use in the Interactive Highway Safety Design Model which include AMFs that are 
derived from expert opinions. In their approach, point estimates of AMFs were derived 
from a collection of expert opinions and were used to adjust baseline model predictions to 
estimate the impact of various countermeasures�as described previously.  Little has 
been written on the exact procedure used to derive AMFs, and their derivation has not 
been as of yet scientifically scrutinized (like for example the evaluation of the AMF and 
base model approach cited previously).   
 

The expert panel approach—step by step  
Prior to critiquing and assessing the expert panel approach used in many HSM 
applications it is important to document and describe the process. The NCHRP 17-29 
team attended and evaluated an expert panel meeting (June 28th through 30th, 2006) 
focused on the development of AMFs for multi-lane rural highways. The expert panel 
process was the same as that used to assess AMFs in prior and subsequent HSM-related 
research. While three team members attended the meeting and focused on the substantive 
matters, one team member focused on the expert panel review process itself, making 
notes of interactions, procedures, and deliberations. The following steps describe in detail 
the expert panel review process as observed during the expert panel meeting. The 
discussion is generalized so as to make the process generic.  

Step 1: Identify expert panelists 
The expert panel consists of nationally recognized experts in the subject matter of 
interest. It is extremely important that a substantial number of leading researchers be 
assembled to conduct the expert panel review. While there is no �magic� number of 
experts, a panel that is too small may not represent the collective set of views in the 
profession, while a panel too large might be unwieldy to manage and reach consensus on 
AMF factors and functions. A number between 10 and 15 experts appears to be an 
appropriate range to satisfy the need to be representative and manage the tasks charged to 
the panel in a reasonable amount of time. A number of specific panel member attributes 
are needed: 

1. Representation from experts in analytical methods and experimental design as 
applied to transportation safety, and preferably to the substantive area of interest. 
Preferably, the experts should have diverse backgrounds, with a mix of people 
coming from the academia, the consulting business, and public transportation 
agencies. 
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2. Geographical representation, so that the collective experience of the experts 
present can speak to the safety needs of various national stakeholders groups, 
including rural, urban, eastern, western, and mountainous regions of the U.S.  

3. Specific subject-matter experience is needed in the substantive area being studied. 
It should not be surprising that selected experts also have authored a 
disproportionate number of the research studies that are discussed during the 
expert panel review. While this may create a potential conflict of interest, it 
cannot be avoided and efforts can be made during the panel proceedings if such a 
conflict creates a problem.  

Step 2: Set panel meeting date and prepare supporting panel materials 
A panel meeting date must be set when all expert panelists can attend. The expert panel 
can take between 2 and 4 full days of deliberation and so a comfortable meeting room 
with snacks, amenities (restrooms, phones, and internet access) is essential to support a 
quality meeting. Meeting minutes are needed and either transcribed from recordings or 
recorded by a meeting secretary. Also, a computer projector and flip charts are needed to 
support the decision-making and consensus building process.  
 
A critical and significant undertaking at this stage is the preparation of materials used to 
support the expert panel review. Typically, this task is undertaken by the funded group or 
team conducting the expert panel review. The essential product of this task is to compile 
copies and/or summaries of all the completed and relevant research related to the 
countermeasures to be discussed by the expert panel. This compilation consists of all 
relevant and available peer-reviewed research and research summaries conducted 
nationally and internationally (if relevant) by countermeasure (e.g., all peer-reviewed 
research on replacing yield with stop signs in rural areas). In many cases, surprisingly 
little peer-reviewed research is available relevant to the objectives of the expert panel. A 
typical expert panel review may require between 15 and 25 countermeasures to be 
evaluated. This countermeasure list is circulated to the panel experts prior to the 
compilation of the materials, to make sure that important countermeasures have not been 
omitted.  
 
Ideally, the binder of relevant research is assembled substantially in advance of the expert 
panel meeting and is distributed to all panelists for their review prior to the meeting. This 
binder becomes a pivotal tool in the expert panel review process, and also serves as an 
important reference prior to, during, and after the expert panel meeting.  
 
Finally, experts are assigned a specific section of the binder to read in detail and asked to 
be prepared to discuss the material during the expert panel meeting. If there is a large 
number of topics, an expert may be assigned a set of countermeasures to review by his or 
herself, whereas a small number of countermeasures may result in overlap among 
experts. These experts are expected to summarize the research objectively during the 
expert panel meeting.  
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Step 3: Conduct expert panel meeting 
By the time the expert panel is convened, a comprehensive list of countermeasures has 
been endorsed by the panel and a binder of all relevant and available research has been 
compiled, summarized, and distributed to the experts for prior review. In addition to their 
subject-matter experience, all experts should arrive at the expert panel meeting having 
reviewed the materials.  
 
An agenda is determined and distributed that follows a logical sequence for discussing 
the countermeasures by group. For example, roadside countermeasures may make one 
group, whereas signing and striping may constitute another. The grouping of course 
depends on the subject matter. Finally, usually there is some hierarchy assigned to the 
groups, with �first order� countermeasures being discussed first, �second order� being 
discussed second, etc. The hierarchy may be determined by the availability of literature 
on the subject (assumed to be proportional to its importance), with high importance 
discussed first; or the speculated magnitude of the countermeasure effect (often 
correlated with the importance), with high-magnitude effects discussed first; or by the 
controversiality of the countermeasures, with less controversial countermeasures 
discussed first. Often these three hierarchies are related to one another (i.e., less 
importance is associated with less research which is associated with more controversy) 
and so the decision on which countermeasures to discuss first usually is not a difficult 
one.  
 
A relatively unstructured open discussion technique is applied, with a designated 
moderator leading the general discussion. Countermeasures are discussed along with the 
research results for each countermeasure. The expert review panel�s goal is to derive a 
�weighted average� AMF factor or function through interactive and open discussion of 
relevant research and by assigning relevance weights to all of the relevant research. 
Although the weights are not explicitly (no numbers assigned) or even objectively 
determined through this process (e.g., ballots), discussion continues until consensus is 
reached. For one countermeasure, this process may take anywhere between 20 minutes 
and 3 hours, and is generally not time-constrained in any way�the panel deliberates until 
an AMF factor or function is agreed upon. It is important to note that an AMF of 1.0 (no 
effect whatsoever) and the lack of a suitable AMF are outcomes on which the panel may 
reach consensus. The analytical equivalent of the expert panel is a meta-analysis, 
although a meta-analysis is significantly more formalized and based on step-by-step 
procedures whereas the expert panel is based more on consensus building.  
 
A number of important issues are discussed with respect to summarizing the available 
peer-reviewed research, typically quite systematically: 
 

1. Relevance of the research to the application being discussed. For example, was 
the research conducted in an urban environment when a rural countermeasure is 
being sought? Was the research conducted on mountainous terrain when flat 
terrain is the setting of interest? Typically these questions of relevance surround 
issues of traffic exposure, driving population (e.g., country in which research was 



 171

conducted), range of conditions examined, and similarity of �non-countermeasure� 
traffic controls.  

2. Timeliness of the research. The age of the research and its affect on changes in 
relevance as regards road users, analysis methods, vehicle safety, and injury 
reporting thresholds is often relevant for discounting the relevance and weighting 
of research.  

3. Non-ideal conditions of the research design. The research conditions that may 
lead to incorrect or weak conclusions such as omitted important variables, 
included irrelevant variables, endogeneity of variables, inappropriate analysis 
methods, or sampling procedure are discussed, with research studies conducted 
under non-ideal conditions typically down weighted.  

4. Sample size and sample representativeness. Studies with large samples typically 
are given greater weight than studies using small samples, all else being equal. In 
addition, studies with greater sampling representativeness (heterogeneity) of the 
population are given greater weight than studies conducted on more limited or 
biased samples.  

5. Findings and conclusions of the research. The conclusions of research are often 
viewed to make sure the expert panel arrives at the same conclusions as the study 
authors. While some of the previously listed issues may attract greater attention, 
studies where authors over- or mis-stated the conclusions are scrutinized.  

 
The expert panel systematically discusses these various aspects of relevant research and 
goes through the pre-organized list of countermeasures one by one. The session recorder 
takes notes, records, and otherwise keeps track of conclusions that are drawn regarding 
all of the AMFs and AMF functions. All of the details necessary to derive an AMF or 
AMF function are decided in this meeting, such as the limits of the function, the shape of 
the function, and any non-linearities, spikes, or humps. In the majority of cases, a 
computer and computer projector are used so the AMFs can be shown during the meeting 
and revised to reflect consensus.  

Step 4: Disseminate Results 
The results of the session are distributed to panel members for review and comment. This 
final step is conducted to make sure all events and decisions made were captured and are 
reflected accurately in the AMF factors and functions. After panel members have 
provided comment, AMFs are described and detailed in a document intended for broader 
dissemination.  

Critique of Expert Panel Process 
With theoretical support for the AMF analytical approach and an established history of 
appropriate uses of expert opinions and panels, the use of expert panels is likely to 
continue into the near future.  
 
There remain, however, some important questions that need to be addressed regarding the 
derivation of AMFs via expert panels.  
 

1. Are the results derived from expert panels precise and/or accurate? 
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2. Can expert panels be used to derive estimates of uncertainty? 
3. Do results across expert panels differ, and if so, how?  
4. What guidance can be provided to expert panels to ensure repeatable and accurate 

results?  
5. Should expert panels follow informal procedures (as they have been) or more 

formal expert panel procedures, such as the Delphi method?  
 
These questions (and perhaps others), which raise issues regarding the scientific 
credibility and use of expert derived AMFs are now addressed in turn. An attempt is 
made to identify how deficiencies might be tested and/or addressed.  

Are the results derived from expert panels accurate and precise? 
Precision and accuracy of AMFs via expert panels are difficult to assess. If statistical 
accuracy and precision criteria are applied, then expert panels would need to be repeated 
numerous times in order to compute the relevant statistics. It is unlikely that this kind of 
controlled expert panel evaluation will be conducted given the enormous resources that 
would be required. 
 
The answer to this question hinges upon the repeatability of experts in deriving an AMF 
factor or function given the relevant literature of information. Research by Melcher et al. 
(2001) showed that experts agreed with one another in evaluating safety countermeasure 
effectiveness. The researchers derived the AMFs in this study in a different manner than 
those derived in HSM expert panels, the differences of which are worthy to note. First, in 
the Melcher study, experts derived AMF factors independent of each other. Second, 
experts were given a random sample of crashes in order to examine the effectiveness of a 
set of countermeasures rather than a summary of literature findings. Third, multiple 
observations across experts were tallied to derive means and variances of the AMFs. 
Finally, only AMF factors were considered (no AMF functions were derived).  
 
The most obvious practical differences between the expert-panel derived AMFs and the 
Melcher derived AMFs are independence and the explicit estimation of precision. The 
verbal and non-verbal interaction that occurs within an expert panel is likely to influence 
the opinions of some experts. Because consensus is one of the aims of the expert panel, 
precision is under-estimated. In other words, independent experts are likely to disagree 
more than experts in a consensus building exercise. It is quite reasonable to speculate, 
however, that the accuracy of the two approaches will be similar�and will be bounded 
by findings in the literature and represent some notion of a mean, median, or mode of 
AMFs as represented in the literature. Moreover, precision of AMFs is not explicitly 
estimated in the expert panel approach, and for all intensive purposes would reflect both 
the degree to which consensus was established and the uncertainty in the literature. As a 
result, it is unlikely that the scale of precision would be reliable across countermeasures. 
For example, countermeasures given ample discussion time may have smaller precision, 
whereas countermeasures discussed prior to when the panel is fatigued may have larger 
variance estimates. Again, the current HSM expert panel practice does not explicitly 
produce variance estimates and so this discussion is hypothetical. 
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To synthesize these results, it is quite likely that the accuracy of expert panel derived 
AMFs is quite acceptable and that experts will produce an AMF factor or function that is 
useful in practice and represents close to a mean, median, or mode AMF factor or 
function on the subject. For estimating precision of AMFs, in contrast, expert panels are 
not as reliable as methods that poll or query experts independently.   

Can expert panels be used to derive estimates of uncertainty? 
As currently practiced in the HSM development, uncertainty in an expert panel represents 
disagreement among experts. Since disagreement may become contentious and/or 
confrontational, especially when experts may be authors of contrasting research studies 
being studied (and conflict of interest is possible), it is not perhaps the most objective 
way of producing uncertainty estimates. Expert panels could arise, for example, where 
most countermeasure discussions are non-confrontational but several are, threatening 
objectivity and comparability of the derived AMFs.    
 
It is possible, however, to modify the existing expert panel process to poll experts prior to 
the consensus building process to derive estimates of uncertainty. This slight 
modification, if applied consistently and in a structured way, could be used to develop 
reliable and objective precision estimates.  

Do results across expert panels differ, and if so, how?  
It is possible that different expert panels would produce different AMF factors or 
functions. As discussed previously, however, these expert panels are not likely to produce 
AMFs that are substantially different. As in all research endeavors, a robust expert panel 
process should not conclude with one expert panel, but will be improved with future 
expert panels refining and updating AMFs from previous panels. Thus, the expert panel 
process and the AMF factors and functions that result should be continually refined and 
improved with future expert panels.   

What guidance can be provided to expert panels to ensure repeatable and accurate 
results?  
Structure and formality of the expert panel procedures will yield repeatability. There is 
considerable structure already included in the expert panel process as described 
previously, yielding what are considered to be accurate AMFs. To improve the process, 
however, there is room for increased formality, particularly when it comes to developing 
estimates of AMF precision and to address potential problems that result from group 
dynamics.  

Should expert panels follow informal procedures (as they have been) or more formal 
expert panel procedures such as the Delphi method?  
The Delphi method for polling experts has been shown to produce forecasts that are more 
accurate than unstructured groups of experts (Green et al., 2007; Rowe and Wright, 1999; 
Rowe and Wright, 2001). The Delphi method makes use of questionnaires in two or more 
rounds of independent polling of panel experts. A facilitator is used to help reach 
consensus on a forecast (e.g., an AMF factor or function) so that a group of experts may 
converge on an accurate answer. The Delphi method rests on the following principals: 
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Structured information flow: Unstructured expert panels suffer from the inclusion of 
irrelevant information and problems associated with group dynamics. In the Delphi 
method, the initial contributions from the experts are collected via questionnaires, along 
with open-ended comments to their answers. The panel facilitator controls the 
interactions among the participants by summarizing the information anonymously and 
filtering out irrelevant content. This procedure purportedly avoids many of the negative 
effects of face-to-face panel discussions and solves the usual problems of group dynamics 
(Rowe and Wright, 1999, 2001). 

Regular feedback: In the Delphi process, participants comment on their forecasts, the 
responses of other experts, and on the progress of the panel as a whole. There are various 
opportunities to revise their earlier statements, and these revisions are done anonymously. 
These revisions are in contrast to unstructured and interactive group meetings, whereby 
participants tend to stick to previously stated opinions and often conform too much to the 
group leader. It is for these reasons that the Delphi method is believed to lead to more 
accurate and objective forecasts.  

Anonymity of the participants: In the Delphi method, all expert panelists maintain 
anonymity throughout the expert panel review process. Their identity is not revealed even 
after completion of a final report or product. The anonymity purportedly prevents expert 
panelists from dominating others in the consensus building process by using their 
authority or personality, frees panelists (to some extent) from their personal biases, and 
minimizes the �bandwagon� or �halo effect� as discussed previously.  The method allows 
experts to freely express their opinions, and encourages open critique and the revision of 
prior judgments given the current group consensus. 

Whether or not the current expert panel process used in support of HSM development 
morphs into a process akin to the Delphi method depends upon the goal of future panels, 
the willingness of HSM organizers to revisit the expert panel process, and the 
professional communities� acceptance of the current HSM expert panel process. It is 
clear, however, that the Delphi method has been shown to produce more objective 
forecasts than unstructured panels. Future expert panels used to illicit highway safety 
AMFs�after the first edition of the HSM is produced�are well-advised to consider the 
positive attributes of the Delphi method when considering possible modifications to the 
process.   

Conclusions 
The NCHRP 17-29 research team attended an expert panel meeting on June 28th through 
30th, 2006 with the explicit objective to evaluate the expert panel process. Upon attending 
this meeting and through experiences conducting numerous other expert panel 
evaluations, the following conclusions are drawn: 
 
1. The current HSM expert panel process, with all its strengths and weaknesses, is being 

consistently applied. Consistency is one hallmark of a credible scientific process. In 
addition, breaking consistency is detrimental to any scientific method. Thus, any 
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changes and/or enhancements made to the current expert panel process should be 
considered after completion of the first edition of the Highway Safety Manual.  

2. The HSM expert panels do not currently derive precision estimates of AMF factors 
and functions, and there is a need to have such information.  

3. The expert panels clearly agree on the mission of the panel�to derive �the best� and 
most reliable estimates of AMFs and AMF functions. Persons are selected with this 
mission in mind and with a track record of conducting scientific research in the 
subject areas. Thus, although estimates are subjectively derived, all of the participants 
are intimate with objective procedures for deriving estimates.  

4. It is quite likely that the accuracy of expert panel derived AMFs is quite acceptable 
and that experts will produce an AMF factor or function that is useful in practice and 
represents close to a mean, median, or mode AMF factor or function on the subject.  

5. For estimating precision of AMFs, in contrast, expert panels are not as reliable as 
methods that poll or query experts independently.  It is possible to modify the existing 
expert panel process (after the first edition of the HSM) to poll experts prior to the 
consensus building process to derive estimates of uncertainty, or to develop a hybrid 
Delphi process. This slight modification to current practice, if applied consistently 
and in a structured way, could be used to develop reliable and objective precision 
estimates.  

6. The expert panel process and the AMF factors and functions that result should be 
continually refined and improved with future expert panels.   

7. Whether or not the current expert panel process used in support of HSM development 
morphs into a process akin to the Delphi method depends upon the goal of future 
panels and the professional communities� acceptance of the current process. It is 
clear, however, that the Delphi method has been shown to produce more objective 
forecasts than unstructured panels. Future expert panels used to illicit highway safety 
AMFs�after the first edition of the HSM is produced�are well-advised to consider 
the positive attributes of the Delphi method when considering possible modifications 
to the process. 

8. The use of the Delphi process would enable the expert panel to avoid a physical 
meeting which reduces the logistics and cost burden of expert panel meetings 
considerably.  

 
There are two overall recommendations as a result of the HSM expert panel review. First, 
the current HSM expert panel process should be revisited upon completion of the first 
edition of the HSM. No changes should be made to the expert panel process prior to 
completion of the current HSM edition, and it is believed that the current expert panel 
process will produce reliable and quite reasonable AMF factors and functions. Existing 
shortcomings are lack of reliable precision estimates of the AMFs, possible complications 
arising from interactions and group dynamics, and possible forecasting bias as a result. It 
may be possible to develop a hybrid expert panel process that utilizes the strengths of the 
existing HSM expert panel process and the Delphi method.  
 
Second, a comparison of the existing HSM expert panel process and the Delphi method 
should be conducted. To accomplish this, a panel of say 16 experts could be selected and 
randomly assigned either to the Delphi or HSM expert panel. The two expert panel 
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approaches should be conducted on a very limited set of countermeasures to produce 
AMF factors and functions. The results obtained from these two approaches should be 
compared, documented, and reported. Specific recommendations on how to conduct 
expert panels for the update of the HSM (or other highway safety effort that involves 
expert panels) should be provided upon completion of this review.  
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3-LEGGED SIGNALIZED INTERSECTIONS 
 

Table D1 Summary Results for 3-Legged Signalized Intersections 
New York Data 

14 Sites 
65 Total Crashes 
35 Injury Crashes 

SPF 
Pearson’s 

Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction 

Error 

Maximum 
Deviation From 

Cure Plot – 
Major AADT 

Maximum 
Deviation 

From Cure 
Plot – 
Minor 
AADT 

MN-Total-1 - - - - - 
CA-Total-1 0.53 2.59 11.20 8.53 8.99 
      
MN-Injury-
1 

- - - - - 

CA-Injury-1 0.48u 0.56 0.49 1.56 1.66 
*No model for Minnesota was successfully calibrated 
 

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

0 5000 10000 15000 20000 25000

Major AADT

C
A

-T
O

T
-1

 C
u

m
u

la
ti

ve
 R

es
id

u
al

s

CA-TOT-1' cum RES

CA-TOT-1 LOW

CA-TOT-1 HIGH

 
Figure D1 CURE Plot for the California Model and Total Crashes (Major AADT) 



 180

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0 5000 10000 15000 20000 25000

Major AADT

C
A

-I
N

J-
1 

C
u

m
u

la
ti

ve
 R

es
id

u
al

s

CA-INJ-1' cum RES

CA-INJ-1 LOW

CA-INJ-1 HIGH

 
Figure D2 CURE Plot for the California Model and Injury Crashes (Major AADT) 
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Figure D3 CURE Plot for the California Model and Total Crashes (Minor AADT) 
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Figure D4 CURE Plot for the California Model and Injury Crashes (Minor AADT) 

 
 
 
3-LEGGED STOP-CONTROLLED INTERSECTIONS 
 

Table D2 Summary Results for 3-Legged Stop-Controlled Intersections 
New York Data 

281 Sites 
673 Total Crashes 
396 Injury Crashes 

SPF 
Pearson’s 

Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction 

Error 

Maximum 
Deviation From 

Cure Plot – 
Major AADT 

Maximum 
Deviation 

From Cure 
Plot – 
Minor 
AADT 

MN-TOT-1 0.46 2.02 10.63 36.85 60.53 
CA-TOT-1 0.46 2.04 10.70 67.97 49.84 
      
MN-INJ-1 0.24 0.66 0.87 12.80 13.15 
CA-INJ-1 0.33 0.67 0.91 19.01 18.30 
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Figure D5 CURE Plot for the Minnesota Model and Total Crashes (Major AADT) 
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Figure D6 CURE Plot for the Minnesota Model and Injury Crashes (Major AADT) 
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Figure D7 CURE Plot for the Minnesota Model and Total Crashes (Minor AADT) 
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Figure D8 Cure Plot for the Minnesota Model and Injury Crashes (Minor AADT) 
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Figure D9 CURE Plot for the California Model and Total Crashes (Major AADT) 
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Figure D10 CURE Plot for the California Model and Injury Crashes (Major AADT) 
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Figure D11 CURE Plot for the California Model and Total Crashes (Minor AADT) 
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Figure D12 CURE Plot for the California Model and Injury Crashes (Minor AADT) 
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4-LEGGED SIGNALIZED INTERSECTIONS 
 

Table D3 Summary Results for 4-Legged Signalized Intersections 
New York Data 

18 Sites 
222 Total Crashes 
107 Injury Crashes 

SPF 
Pearson�s 

Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction Error 

Maximum 
Deviation From 

Cure Plot � 
Major AADT 

Maximum 
Deviation 
From Cure 

Plot � Minor 
AADT 

MN-Total-1 0.27 6.28 67.32 51.44 45.83 
CA-Total-1 0.24 6.30 69.52 52.93 43.14 
      
MN-Injury-
1 

-0.01 1.71 4.00 12.45 11.47 

CA-Injury-1 - - - - - 
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Figure D13 CURE Plot for the Minnesota Model and Total Crashes (Major AADT) 
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Figure D14 CURE Plot for Minnesota Model and Injury Crashes (Major AADT) 
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Figure D15 CURE Plot for the Minnesota Model and Total Crashes (Minor AADT) 
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Figure D16 CURE Plot for the Minnesota Model and Injury Crashes (Minor AADT) 
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Figure D17 CURE Plot for the California Model and Total Crashes (Major AADT) 
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Figure D18 CURE Plot for the California Model and Total Crashes (Minor AADT) 

 
 
4-LEGGED STOP-CONTROLLED INTERSECTIONS 
 

Table D4 Summary Results for 4-Legged Stop-Controlled Intersections 
New York Data 

71 Sites 
472 Total Crashes 
299 Injury Crashes 

SPF 
Pearson’s 

Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction 

Error 

Maximum 
Deviation From 

Cure Plot – 
Major AADT 

Maximum 
Deviation 

From Cure 
Plot – 
Minor 
AADT 

MN-TOT-1 0.47 4.47 45.19 72.26 78.04 
CA-TOT-1 0.49 4.41 41.21 46.59 53.31 
      
MN-INJ-1 0.01 1.82 6.46 23.76 23.27 
CA-INJ-1 0.00 1.73 5.75 15.47 14.94 
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Figure D19 CURE Plot for the Minnesota Model and Total Crashes (Major AADT) 
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Figure D20 CURE Plot for the Minnesota Model and Injury Crashes (Major AADT) 
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Figure D21 CURE Plot for the Minnesota Model and Total Crashes (Minor AADT) 
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Figure D22 CURE Plot for the Minnesota Model and Injury Crashes (Minor AADT) 
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Figure D23 CURE Plot for the California Model and Total Crashes (Major AADT) 
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Figure D24 CURE Plot for the California Model and Injury Crashes (Major AADT) 
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Figure D25 CURE Plot for the California Model and Total Crashes (Minor AADT) 
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Figure D26 CURE Plot for the California Model and Injury Crashes (Minor AADT) 
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SEGMENT MODELS 
 

Table D5 Summary Results for 4-Lane Undivided Segments 
New York Data 

199 Sites 
2048 Total Crashes (7 years) 

Statistical 
Model 

Pearson’s 
Correlation 
Coefficient 

Mean Absolute 
Deviation 

Mean Squared 
Prediction Error 

Maximum 
Deviation From 

Cure Plot 
General ADT � 
Total 
(all states) 

0.874 0.711 1.564 18.529 

California �Total 0.757 0.936 12.308 49.310 
Minnesota � Total  0.865 0.687 1.326 11.947 
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Figure D27 CURE Plot for the General ADT Model and Total Crashes 
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Figure D28 CURE Plot for the California Model and Total Crashes 
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Figure D29 CURE Plot for the Minnesota Model and Total Crashes 
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APPENDIX E 
 

Crash Severity Models 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This appendix was originally prepared by Drs. Eun-Sug Park and Dominique Lord. A full paper has been 
published as a peer-reviewed publication in a Transportation Research Record Series: Park, E.S., and D. 
Lord (2007) Multivariate Poisson-Lognormal Models for Jointly Modeling Crash Frequency by Severity. 
Transportation Research Record 2019, pp. 1-6. 
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This appendix describes a new multivariate approach for jointly modeling crash 

counts by severity data based on Multivariate Poisson-Lognormal (MVPLN) models.  
This approach was evaluated as part of this research project, but will not be included in 
HSM Chapter 9. Although it offers potential for modeling motor vehicle crashes, further 
work is needed on this topic. 
 

Even though the crash frequency by severity data are multivariate in nature, they 
have often been analyzed by modeling each severity level separately without taking into 
account correlations that exist among different severity levels.  Traditionally, count data 
models have always been estimated for different severity levels (KAB, KABCO, etc.) 
separately, as done in this work. In other words, a different model is estimated for each 
severity level. In recent years, mixed logit (Milton et al., 2007) and ordered logit or probit 
models (Khattak, 2001; Kockelman and Kweon, 2002; Kweon and Kockelman, 2003) 
have been proposed for estimating risk of sustaining injuries by severity level, given that 
a crash occurred. The output of these models can be used for estimating crash count by 
severity level when it is multiplied by the output of crash count models for all crash 
severities (Miaou et al., 2005). However, even by combining the output of these two 
models, the correlation between the severity levels is not taken into account in the 
modeling process.  

 
The new MVLPN approach builds upon the Multivariate Poisson regression 

(MVP) model (Tsionas, 2001; Tunaru, 2002; Bijleveld, 2005; Miaou and Song, 2005; 
Karlis and Meligkotsidou, 2005; Song et al., 2006, Ma and Kockelman, 2006). MVLPN 
can cope with either over-dispersion or a fully general correlation structure in the data as 
opposed to the recently suggested Multivariate Poisson regression approach that allows 
for neither over-dispersion nor a general correlation structure in the data. For additional 
details about the theoretical framework of these models, the reader is referred to Chib and 
Winkelmann (2001) and Park and Lord (2007).  

 
 Implementation of MVPLN models is not straightforward.  It needs to be noted 
that no commercial statistical software packages have the ability to estimate these models 
as built-in functions.  As mentioned in Chib and Winkelmann (2001), it is necessary to 
adapt simulation-based methods such as a MCMC simulation method (see, e.g., Tierney 
et al., 1994; Gilks et al., 1996; Lui, 2001) to cope with the multiple integral in the 
likelihood function.  To estimate MVPLN models, the MATLAB (The MathWorks, 
2006) codes tailored to multivariate crash data modeling have been developed according 
to the MCMC algorithm of Chib and Winkelmann (2001). 
 
 The MVPLN models were applied to the crash count data of five different 
severity levels described above: fatal (K), incapacitating-injury (A), non-incapacitating 
injury (B), minor injury (C), property damage only (PDO or O) collected from the 451 
three-legged unsignalized intersections in California described above.  Although the 
original data contained the crash counts from 537 intersections, only the intersections 
having 10 years of crash data history were retained (resulting in 451 intersections).  
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 Table E1 contains the summary statistics of the variables of interest. In the table, 
the unit of crash frequency is the number of crashes per intersection for 10 years.  The 
major and minor roads of the intersection are defined as a function of the entering traffic 
flow. The legs with the highest entering flows are defined as major AADT. 
 

Table E1 Summary Statistics of the Variables for 
California 3-Legged Intersection Data 

Variable Name Mean Std Dev Min. Max. 
Dependent Variables 
Fatal 0.1707 0.5204 0 5 
Injury A 0.4479 0.9609 0 6 
Injury B 1.6364 2.5159 0 20 
Injury C 1.9180 3.5571 0 28 
PDO 6.3348 9.9493 0 88 
Independent Variables 
Lighting (1= yes) 0.3525 0.4783 0 1 
Painted Left Turn (1= yes) 0.3925 0.4888 0 1 
Curb Med Left Turn (1=yes) 0.1330 0.3340 0 1 
Right Turn Channel (1=yes) 0.1397 0.3470 0 1 
ML Lanes (Nb of Main Lanes) 3.6851 0.7292 2 4 
Mountain Terrain (1=yes) 0.1397 0.3470 0 1 
Rolling Terrain (1=yes) 0.3570 0.4796 0 1 
Logmaj (Logarithm of major AADT) 9.4195 0.7514 7.7956 11.2683 
Logmin (Logarithm of minor AADT) 4.9193 1.5148 2.3026 10.0481 

  
Table E2 gives the estimates (posterior means and standard deviations) of the 

regression coefficients β  based on a MVPLN model implemented by MCMC using the 
MATLAB (The MathWorks, 2006) codes specifically developed for this research.  Recall 
that the functional form used for the models was described in Equations 5.1 to 5.7. The 
dependent variable is defined as the number of crashes per 10 years. To ensure that the 
chain has converged to the posterior distribution by the end of the burn-in period, trace 
plots and the autocorrelation function plots of posterior sample values were inspected 
although those plots are not presented in the paper due to space limitations.   

 
For comparison purposes, Table E2 reports the estimates obtained by applying the 

univariate Poisson regression model and the univariate NB regression model 
implemented in SAS (SAS, 2002) as well.   
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Table E2 Modeling Output for Models by Severity 
Severity 

 
Variable Multivariate Poisson-

Lognormal Model 
Univariate Poisson 

Regression 
Univariate Negative 

Binomial 
Regression 

Constant -13.0261 (1.6854) -15.2279 (2.0375) -14.9638 (2.2200) 
Lighting -0.5544 (0.3229) -0.5955 (0.3204) -0.5704 (0.3470) 
Painted Left Turn 0.5349 (0.2859) 0.5032 (0.2886) 0.5158 (0.3138) 
Curb Med Left Turn 0.4994 (0.3534) 0.6221 (0.3446) 0.6228 (0.3884) 
Rhgt Trn Channel 0.2777 (0.3156) 0.3752 (0.2870) 0.2991 (0.3356) 
ML Lanes 0.2934 (0.2764) 0.2815 (0.3045) 0.2714 (0.3152) 
Mountain -0.1367 (0.3720) -0.3431 (0.3764) -0.1864 (0.4232) 
Rolling -0.3916 (0.2733) -0.5641 (0.2689) -0.5400 (0.3005) 
Logmaj ADT 0.8818 (0.1698) 1.1537 (0.1894) 1.1188 (0.2088) 
Logmin ADT 0.2069 (0.0873) 0.2052 (0.0810) 0.2223 (0.0921) 
   Dispersion: 0.7059 

 
 
 
 
 
Fatal 

Pearson Chi-Square/DF 1.2232 1.0667 
Constant -12.5689 (1.2596) -13.2302 (1.1873) -13.4023 (1.4116) 
Lighting  0.2345 (0.1993) 0.2997 (0.1733) 0.2844 (0.2072) 
Painted Left Turn 0.5569 (0.2031) 0.4796 (0.1706) 0.5572 (0.2023) 
Curb Med Left Turn 0.1780 (0.2856) 0.2229 (0.2431) 0.2290 (0.2882) 
Rhgt Trn Channel 0.2285 (0.2379) 0.3425 (0.1821) 0.2686 (0.2408) 
ML Lanes 0.1625 (0.1737) 0.1571 (0.1563) 0.1490 (0.1703) 
Mountain Terrain 0.3866 (0.2667) 0.3106 (0.2294) 0.4187 (0.2762) 
Rolling Terrain 0.4564 (0.1918) 0.4112 (0.1611) 0.4710 (0.1910) 
Logmaj 0.9097 (0.1336) 1.0435 (0.1186) 1.0548 (0.1422) 
Logmin 0.2331 (0.0612) 0.1899 (0.0492) 0.1952 (0.0619) 
   Dispersion: 0.6070 

 
 
 
 
 
Inj A 
 
 
 
 
 

Pearson Chi-Square/DF 1.2699 1.0042 
Constant -9.8505 (0.8479) -9.9059 (0.5815) -10.1854 (0.8482) 
Lighting  0.2081 (0.1360) 0.2315 (0.0907) 0.2025 (0.1321) 
Painted Left Turn 0.1088 (0.1388) 0.0648 (0.0844) 0.1206 (0.1271) 
Curb Med Left Turn 0.0560 (0.1875) 0.0780 (0.1188) 0.0896 (0.1811) 
Rhgt Trn Channel 0.0793 (0.1619) 0.2511 (0.1002) 0.0499 (0.1655) 
ML Lanes 0.0417 (0.0995) 0.0404 (0.0692) 0.0491 (0.0911) 
Mountain 0.4458 (0.1650) 0.3636 (0.1074) 0.5708 (0.1691) 
Rolling 0.0734 (0.1329) 0.0447 (0.0846) 0.0885 (0.1257) 
Logmaj 0.8936 (0.0907) 0.9463 (0.0604) 0.9645 (0.0881) 
Logmin 0.1789 (0.0419) 0.1608 (0.0262) 0.1670 (0.0393) 
   Dispersion: 0.6048 

 
 
 
 
 
Inj B 
 
 
 
 
 

Pearson Chi-Square/DF 2.0799 1.0555 
Constant -11.9536 (0.8721) -12.4660 (0.5726) -11.4316 (0.8863) 
Lighting  0.5212 (0.1409) 0.5264 (0.0845) 0.5422 (0.1394) 
Painted Left Turn 0.0119 (0.1485) -0.0357 (0.0774) 0.0169 (0.1354) 
Curb Med Left Turn -0.1958 (0.1990) -0.1487 (0.1172) -0.1396 (0.1984) 
Rhgt Trn Channel 0.2490 (0.1789) 0.2908 (0.0917) 0.3392 (0.1743) 
ML Lanes 0.0134 (0.1007) 0.0140 (0.0649) 0.0093 (0.0966) 
Mountain 0.4015 (0.1790) 0.3253 (0.1007) 0.4683 (0.1837) 
Rolling 0.0518 (0.1451) 0.0569 (0.0787) 0.0536 (0.1353) 
Logmaj 1.0857 (0.0926) 1.2034 (0.0593) 1.0921 (0.0938) 
Logmin 0.2317 (0.0442) 0.1982 (0.0240) 0.1997 (0.0417) 
   Dispersion: 0.8015  

 
 
 
 
 
Inj C 
 
 
 
 
 

Pearson Chi-Square/DF 2.8881 1.2074 
 Constant -9.9596 (0.6670) -10.1806 (0.3065) -9.6546 (0.6358) 
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Lighting  0.4203 (0.1051) 0.3544 (0.0465) 0.4881 (0.1049) 
Painted Left Turn -0.2159 (0.1127) -0.2326 (0.0420) -0.2327 (0.1027) 
Curb Med Left Turn -0.1494 (0.1482) -0.1836 (0.0611) -0.2024 (0.1471) 
Rhgt Trn Channel 0.0715 (0.1263) 0.1864 (0.0525) 0.1016 (0.1311) 
ML Lanes 0.1257 (0.0723) 0.1041 (0.0373) 0.1423 (0.0692) 
Mountain 0.5337 (0.1347) 0.5352 (0.0533) 0.5966 (0.1376) 
Rolling 0.1260 (0.1046) 0.1403 (0.0437) 0.0699 (0.1004) 
Logmaj 0.9777 (0.0717) 1.0593 (0.0315) 0.9829 (0.0676) 
Logmin 0.2493 (0.0333) 0.2193 (0.0132) 0.2291 (0.0321) 
   Dispersion: 0.6225 

 
 
 
 
PDO 
 
 
 
 
 

Pearson Chi-Square/DF 5.4932 1.1823 
1. Multivariate Poisson-Lognormal model was implemented by MCMC coded in MATLAB (MathWorks, 
2006). 
2. Univariate Poisson regression and Univariate Negative Binomial regression were implemented in SAS 
(27). 
3. Numbers in parentheses represent uncertainty estimates; posterior standard deviations under Multivariate 
Poisson lognormal model and standard errors under Univariate Poisson regression model and Univariate 
Negative binomial regression model, respectively. 
4. Significant (at α=0.05) effects are shown in bold. 
 

It needs to be noted that for an objective comparison the prior distributions of the 
parameters and the starting values in MCMC implementation have been obtained 
independently of the SAS results. Here, the research team used vaguer priors not 
requiring much prior knowledge on the parameters to illustrate that the suggested 
MVPLN models can be applied even without precise prior knowledge.  When there exists 
good prior information on the parameters, however, it can be incorporated by the use of 
more informative (precise) prior distribution, and it may further improve the precision of 
the MVPLN models.  A more comprehensive discussion on elicitation of priors in crash 
data analysis can be found in literature such as Schluter et al. (1997). Finally, all the 
variables described in Table E1 were included in the models to facilitate the comparison 
between the multivariate and univariate models. 

 
 It can be observed from Table E2 that for fatal and injury A, all three models give 
similar results in terms of point estimates and their uncertainty estimates except for 
Rolling Terrain for fatal crashes (which was significant only under the univariate Poisson 
regression model).  For injuries A and B, and PDO crashes, however, univariate Poisson 
regression models give significantly different results (in terms of both point estimates and 
uncertainty estimates) from those of MVPLN models or univariate Negative Binomial 
regression models.  For injuries A and B, and PDO crashes, it appears that under the 
univariate Poisson regression model, the standard errors are seriously underestimated 
and, as a result, many of the covariates are incorrectly declared to be significant.  Note 
that the values of Pearson�s Chi-Square divided by degrees of freedom for univariate 
Poisson regression models are considerably greater than 1 for injuries A and B, and PDO 
crashes, which indicates an apparent over-dispersion problem.  It is well-known that the 
larger the over-dispersion, the more severe the underestimation of the standard errors, in 
which case those standard errors are not correct estimates of true uncertainties and the 
corresponding interval estimates will not be able to capture the true parameter values.  
This problem cannot be overcome with MVP regression models either because over-
dispersion is not accounted for by those models.  It needs to be emphasized that for the 
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unbiased estimates, the small standard errors (more precise estimates), only when they 
are not underestimated, lead to more accurate parameter estimates.  
   
 MVPLN models and univariate NB models give, in general, consistent results in 
terms of significance of model coefficients.  Notice, however, that for fatal crashes the 
uncertainty estimates from the MVPLN model are noticeably smaller than those from the 
univariate NB model. Unlike univariate Poisson regression models, both MVPLN models 
and univariate NB regression models are able to account for over-dispersion, and their 
standard errors can serve as good estimates of true uncertainties.  This supports that by 
accounting for correlation in multivariate crash frequency by severity a MVPLN model 
leads to more precise parameter estimates than a univariate Negative Binomial model 
does. 
 
 Table E3 and Table E4 contain the MCMC estimates of the covariance matrix and 
correlation matrix of the latent effects (generating the correlation structure in the 
multivariate crash counts) of the MVPLN model, respectively.   
 

Table E3 Posterior Means of the Covariance Matrix (Σ) of the Latent Effects 
 Fatal Injury A Injury B Injury C PDO 
Fatal 0.6592 0.4884 0.4743 0.5487 0.4638 
Injury A 0.4884 0.7408 0.5251 0.6054 0.4998 
Injury B 0.4743 0.5251 0.7224 0.6595 0.5424 
Injury C 0.5487 0.6054 0.6595 0.9357 0.6760 
PDO 0.4638 0.4998 0.5424 0.6760 0.6651 

 
Table E4 Posterior Means of the Correlation Matrix of the Latent Effects 

 Fatal Injury A Injury B Injury C PDO 
Fatal 1.0000     
Injury A 0.7035 1.0000    
Injury B 0.6904 0.7203 1.0000   
Injury C 0.7030 0.7297 0.8035 1.0000  
PDO 0.7043 0.7152 0.7834 0.8575 1.0000 

 
 Recall that MVP regression models suggested by other researchers (e.g., Ma 
and Kockelman, 2006) are very restrictive in the sense that they assume the covariances 
for different severity levels are all identical and non-negative as well as no over-
dispersion is found in the data.  On the other hand, the new MVPLN models that can be 
implemented by MCMC allow for a fully general correlation structure as well as allow 
for over-dispersion in the crash data.  From Tables 6.51 and 6.52, it can be observed that 
there is a positive correlation between each of the latent effects in the crash counts of five 
severity types but the correlations for different severity levels are not identical. Thus, as 
with any statistical models, this correlation needs to be incorporated in the estimation of 
the model.  
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APPENDIX F 
 

Methodology for Estimating the Variance and Confidence Intervals for 
the Estimate of the Product of Baseline Models and AMFs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This document was originally prepared by Dr. Dominique Lord. It has been published as a peer-reviewed 
publication in Accident Analysis & Prevention (in press, as of February, 2008):  
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INTRODUCTION 
 
This appendix describes a methodology for estimating the variance and 95% confidence 
intervals (CI) for the estimate of the product between baseline models and Accident 
Modification Factors (AMFs). This methodology is provided for the upcoming Highway 
Safety Manual (HSM) (see Hughes et al., 2005, for additional information) currently in 
development in the United States (U.S.). The HSM, which is near completion, is a 
document that will serve as a tool to help practitioners make planning, design, and 
operations decisions based on safety. The document will serve the same role for safety 
analysis that the Highway Capacity Manual (HCM) (TRB, 2000) serves for traffic-
operations analyses. The purpose of the HSM is to provide the best factual information 
and tools in a useful and widely accepted form to facilitate explicit consideration of 
safety in the decision making process. 
 
The technique described in the HSM consists of first developing baseline models using 
data that meet specific nominal conditions, such as 12-ft lane and 8-ft shoulder widths for 
segments or no turning lanes for intersections. These conditions usually reflect design or 
operational variables most commonly used by state transportation agencies (defined as 
state DOTs). Consequently, baseline models typically only include traffic flow as 
covariates (e.g., 1 2

0 1 2F Fβ βµ β= ). The second component of the technique consists of 
multiplying the output of such models by AMFs to capture changes in geometric design 
and operational characteristics (Hughes et al., 2005). An important assumption about 
using this technique is that the AMFs are considered independent, which may not always 
be true in practice. The formulation of the technique is given by the following: 
 

1final baseline nAMF AMFµ µ= × × ×K        (1) 

 
Where, 
 finalµ  = final predicted number of crashes per unit of time; 

 baselineµ  = baseline predicted number of crashes per unit of time (via a regression 
model); and 

 1 nAMF AMF× ×K  = accident modification factors assumed to be independent.  
 
Recent discussions at various meetings related to the production of the Manual have 
shown that estimating the uncertainty associated with baseline models, AMFs, and the 
estimate of the product between the two have become very important in the eyes of the 
Task Force members, the committee responsible for the implementation of the Manual, as 
well as for potential HSM users. So far, the work in this area has only focused on 
estimating the uncertainty associated with AMFs (Bahar et al., 2007) and, to a lesser 
degree, with regression models (Wood, 2005; Agrawal and Lord, 2006) (the latter not in 
the context of the HSM however). There is therefore a need to fill this gap by providing a 
methodology for estimating the variance of the estimate of the product of baseline models 
and AMFs.  
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This appendix is divided into three sections. The second section describes the first part of 
the methodology, which consists of estimating the variance of the product of baseline 
models and AMFs. This section covers the background material on the product of random 
materials and presents two examples describing different combinations of baseline 
models, AMFs, and their associated uncertainties. The third section describes the second 
part of the methodology and explains how to compute the variance of baseline models. 
An example illustrates the computation of the variance of baseline models as well as the 
95% CI for the final product. 
 
 
ESTIMATING THE VARIANCE OF BASELINE MODELS AND AMFs 
 
This section describes the first part of the methodology and is divided into two sub-
sections. The first sub-section provides details about the theory behind the multiplication 
of independent random variables. The second sub-section presents the application of the 
proposed method for estimating the variance of the estimate of the product of baseline 
models and AMFs. Two examples are provided. 
 
 
Computing the Product of Random Variables 
 
The estimation of the variance can be accomplished using the theory behind the 
multiplication of independent random variables (Ang and Tang, 1975; Browne, 2000). 
This theory states that the equations presented below will be exactly independent of the 
type of distribution to which each random variable belongs. For the purpose of this 
description, we will define z  as the product of independent random variables: 
 

L321 xxxz =          (2) 
 
where, 
 z  = the product of independent random variables; and 
 sx'  = random variable taken from any kind of distribution. 
 
It should be pointed out that the mean and variance estimates are defined as [ ]E x λ=  

and ( )2
E x λ ν⎡ ⎤− =
⎣ ⎦  (second central moment), respectively. 

 
Mean of a Product 
 
The mean of the product is the direct application of Equation (2): 
 

L321 xxxz =  

[ ] [ ] [ ] [ ]L321 xExExEzE =        (3) 

1 2 3z x x xλ λ λ λ= L  
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The mean or average of the product is simply the product of the mean value of the 
random variables. 
 
Variance of a Product 
 
The variance of a product is obtained by taking the expectation square of z : 
 

L

2
3

2
2

2
1

2 xxxz =  

[ ] [ ] [ ] [ ]L2
3

2
2

2
1

2 xExExEzE =        (4) 

( ) ( )( )( )2 2 2 2
1 1 2 2 3 3z z x x x x x xλ ν λ ν λ ν λ ν+ = + + + L  

 

Note: ( )( )nnE x E x λ λ⎡ ⎤⎡ ⎤ = − +⎣ ⎦ ⎣ ⎦
;  

for 2n = , ( )( )22E x E x λ λ⎡ ⎤⎡ ⎤ = − + =⎣ ⎦ ⎣ ⎦
( ) ( )2 2 22E x E x Eλ λ λ λ ν λ⎡ ⎤ ⎡ ⎤− + − + = +⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

 
The variance zν  is computed by first calculating the product on the right hand side and 

then subtracting the square of the mean 2
zλ  computed in Equation (4): 

  

( )( )( )2 2 2 2
1 1 2 2 3 3z x x x x x x zν λ ν λ ν λ ν λ= + + + −L      (5) 

 
Note that if all 'x sν  equal zero, the variance zν  will also equal zero: 
 

( )( )( )2 2 2 2
1 2 3

2 2 0

z x x x z

z z z

ν λ λ λ λ

ν λ λ

= −

= − =

L

       (6) 

 
Application of the Theory 
 
This section describes the application of the theory behind the multiplication of 
independent random variables. Two examples describing different values of predicted 
values, AMFs, and associated uncertainties are presented. The uncertainty associated 
with the baseline models can be estimated using the method described in the next section. 
For estimating the uncertainty related to AMFs, the reader is referred to the work of 
Bahar et al. (2007), which will be incorporated into the forthcoming HSM. 
 
Example 1 � One AMF 
 
This example shows the application of a single AMF. Let 1x  represent the predicted value 

of a baseline model and 2x  an AMF: 
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1 5.0x =  crashes/year (standard deviation or SD = 2.0 crashes/year) 

2 0.80x =   (SD = 0.10) 
 
The mean is given by: 
 

5.0 0.80 4.0zλ = × =  
 
The variance is given by: 
 

( ) ( )
( )( )

2 2 25.0 4.0 0.80 0.01 4.0

29 0.65 16.0 18.85 16.0 2.85

z

z

ν

ν

= + + −

= − = − =
 

 
The final value is estimated to be: 
 

4.0 crashes/year (SD = 1.69 crashes/year) 
 
Example 2 � Two AMFs 
 
In this example, two AMFs are used. Let 1x  represent the predicted value of a baseline 

model and 2x  and 3x  independent AMFs: 
 

1 5.0x =  crashes/year (stand. dev. = 2.0 crashes/year) 

2 0.95x =   (SD = 0.10) 

3 0.90x =   (SD = 0.20) 
 
The mean is given by: 
 

5.0 0.90 0.95 4.275zλ = × × =  
 
The variance is given by: 
 

( ) ( )( )
( )( ) ( )

2 2 2 25.0 4.0 0.95 0.01 0.90 0.04 4.275

29 0.912 0.85 18.276 22.481 18.276 4.205

z

z

ν

ν

= + + + −

= − = − =
 

 
The final value is estimated to be: 
 

4.275 crashes/year (SD = 2.05 crashes/year) 
 
It should be pointed out that adding (independent) AMFs in Equation (1) increases the 
uncertainty associated with the final estimate, especially if the uncertainty for each AMF 
is large. This will have an influence for the comparison of different highway design 
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alternatives based on safety, as discussed below. The next section explains how to 
estimate the variance associated with baseline models. 
 
 
ESTIMATING THE VARIANCE OF BASELINE MODELS 
 
This section briefly describes the second part of the methodology, which consists of 
estimating the variance of predictive baseline models. It should be pointed out that the 
methodology is not limited to baseline models, since it can also be applied to any type of 
regression models (e.g., general ADT models, models with covariates, etc.). The first 
sub-section describes the basic method for estimating the variance. The second sub-
section presents an application of the method and provides details about estimating 95% 
CI after the product of baseline models and AMFs. 
 
 
Method for Computing the Variance 
 
There are difference methods for estimating the variance (and confidence intervals) of 
predicted values generated from generalized linear models (Cameron and Trivedi, 1998; 
Myers et al., 2002). The most recent and relevant method has been proposed by Wood 
(2005), who specifically developed a procedure for computing the variance and CI for 
crash prediction models. He worked out the procedure for both Poisson and Poisson-
gamma models. Table F1 shows the variance of the expressions for estimates of the 
Poisson mean µ , gamma mean m , and predicted response y  for Poisson and Poisson-
gamma models. This table shows that confidence intervals used to estimate the 
uncertainty of the gamma mean and the predicted response for the Poisson-gamma model 
both incorporate the inverse dispersion parameter, φ . It should be pointed out that in 
most cases the predicted response will be of interest, since the model will be applied to an 
observation (or site) that was not used for developing the statistical models. 
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Table F1 Variance Estimation for Poisson and Poisson-gamma Models (Wood, 2005) 
Variance Parameter 

 Poisson Poisson-gamma 
µ  µν  2 �� ( )Varµ η  2 �� ( )Varµ η  

m  mν  ---- 
2 2

2 �� �var( )
�� var( )

µ η µµ η
φ

⎧ ⎫++⎨ ⎬
⎩ ⎭

 

y yν  ( ){ }2 �� �Varµ η µ+  
2 2

2 �� �( )
�� �( )

Var
Var

µ η µµ η µ
φ

⎧ ⎫++ +⎨ ⎬
⎩ ⎭

 

Note: 
1

0 0
�( ) ( )Var η −′ ′= x XWX x  

�µ  = mean estimate of the Poisson or Poisson-gamma model (see Equation 1 above) 

φ  = inverse dispersion parameter of the Poisson-gamma model 

µν = variance of the Poisson mean 

mν = variance of the gamma mean 

yν = variance of the predicted response 

 
Application of the Method 
 
For this application, data collected at 800 4-legged signalized intersections in Toronto 
were used (a subset of the original data found in Lord, 2000). The data included 
intersection and intersection-related crashes as well as entering flows at major and minor 
approaches for the year 1995. These data have been used extensively by previous 
researchers and have been found to be of relatively good quality (Lord, 2000; Miaou and 
Lord, 2003; Miranda-Moreno and Fu, 2007). Table F2 describes the summary statistics of 
the data. 
 

Table F2 Summary Statistics 
Variable Minimum Maximum Average (Std Dev) 

MajorF  (AADT) 5,296 72,310 27,471 (14,299) 

MinorF  (AADT) 52 42,644 10,768 (1,779) 

Crashes per year 0 44 9.49 (7.82) 
 
In this application, the model developed is classified as a general ADT model. These 
kinds of model are flow-only models estimated using average conditions reflected in the 
database. General ADT models have the same functional form as baseline models and are 
given by the following: 
 

1 2
0 Major MinorF Fβ βµ β=         (7) 
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Where, 
 
 µ  = the mean number of crashes per year; 

 MajorF  = entering vehicle per day (AADT) for the major approaches;  

MinorF  = entering vehicle per day (AADT) for the minor approaches; and 

0 1 2, ,β β β  = regression coefficients. 
 
As reported by Miaou and Lord (2003), the functional form described above is not the 
most adequate for describing the relationship between crashes and exposure since the 
form does not appropriately fit the data near the boundary conditions (i.e., when 0F →  
and for maxF ). Nonetheless, it is still relevant for this application, as it is considered an 
established functional form in the highway safety literature. In addition, the most 
adequate functional form proposed by Miaou and Lord (2003), a model with two distinct 
mean functions, cannot be estimated via a generalized linear modeling (GLM) 
framework, as it was done herein. 
 
Tables F3 and F4 summarize the modeling output and variance-covariance matrix, 

1( )−′XWX , respectively. The data were fitted using a Poisson-gamma regression model 

with a fixed inverse dispersion parameter (e.g., 
2

( )Var Y µµ φ= + ) [see Miaou and Lord 

(2003), and Mitra and Washington (2007) about this assumption]. The coefficients of the 
model were estimated using Genstat (Payne, 2000).  
 

Table F3 Model Output 
Variable Coefficients (std. err.) 

Intercept ( 0ln β ) -11.120 (0.204) 

MajorF  ( 1β ) 0.558 (0.020) 

MinorF  ( 2β ) 0.650 (0.009) 

Inverse dispersion parameter (φ ) 6.46 (0.22) 
Goodness-of-fit Statistics Deviance: 5602 (F=3,807) 

Deviance Ratio: 1.076 
 

Table F4 Variance-Covariance Matrix 
Variable Intercept 

MajorF  MinorF  

Intercept 0.041513 -0.003735 -0.000377 

MajorF   -0.003735 0.0000404 -0.000043 

MinorF   -0.000377 -0.000043 0.000089 

 
 
In this application, we can assume that the signalized intersection investigated, which has 
not been used for developing the model, has the following characteristics: MajorF = 35,500 
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veh/day ( ln 35,500 10.48= ) and MinorF = 5,000 veh/day ( ln 5,000 8.52= ). The mean 
number of crashes is estimated to be 1.30 crashes per year 
( 0.558 0.6500.00001481 35,500 5,000µ = × × ). 
 
The variance �( )Var η can be computed the following way: 
 

( )

1
0 0

�( ) ( )

0.041513 0.003735 0.0000377 1

�( ) 1 10.48 8.52 0.003735 0.000404 0.000043 10.48

0.0000377 0.000043 0.000089 8.52

�( ) 0.000166

Var

Var

Var

η

η

η

−′ ′=
− −⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

=

x XWX x

 (8) 

 
Using the value of �( )Var η  computed above, the variance for the Poisson mean µ , 
gamma mean m , and predicted response y  can be calculated using the equations in 
Table F1 (using the column for Poisson-gamma models). The results are shown in Table 
F5. 
 

Table F5 Estimated Variance for the Poisson Mean, 
gamma Mean, and Predicted Response 
Parameter Variance 

µ  µν  0.000281 

m  mν  0.2622 

y yν  1.5639 

Note: 
� 1.30µ =  

�( ) 0.000166Var η =  
 
Now, let us assume that two AMFs (i.e., hypothetical values) can be used to estimate 
changes associated with the introduction of left-turn and right-turn lanes, both located on 
the major approaches (both sides), respectively: AMF1 = 0.90 (SD = 0.05) and AMF2 = 
0.95 (SD = 0.10). Also assume that the model represents a baseline model, where the 
sites do not have right- and left-turning lanes. Using Equations (4) and (5), one can, for 
instance, estimate the predicted value and associated uncertainty the following way [note: 
we changed the notation from finalµ , as shown in Equation (1), to zλ  for this example]: 

 

1 2

1.30 0.90 0.95 1.1115

z AMF AMF

z

λ µ λ λ
λ

= × ×

= × × =
      (9) 
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( )( ) ( )
( )( )( )
( )( )( )

1 1 2 2

2 2 2 2

2 2 2 21.30 1.564 0.90 0.0025 0.95 0.01 1.1115

3.2540 0.8125 0.9125 1.2354 1.1771

zy y AMF AMF AMF AMF z

zy

zy

ν µ ν λ ν λ ν λ

ν

ν

= + + + −

= + + + −

= − =

  (10) 

 
[Note: zyν  denotes the variance was estimated using the variance associated with the 

predicted response of the baseline model ( yν ) and the variance of AMFs.] 

 
Therefore, the estimated value after the AMFs are multiplied with the baseline model 
output is 1.112 crashes/year for the signalized intersection under investigation. The 
standard deviation of the estimate of the product is equal to 1.084. 
 
If the 95% CI is the value of central interest, it can be computed using the equations listed 
in Table F6 (see Wood, 2005, for additional information). Confidence intervals can be 
used for screening highway design alternatives based on safety (e.g., Kononov and 
Allery, 2004) or identifying hazardous sites (Miranda-Moreno et al., 2005). For the value 
above, the 95% (predicted) confidence interval is located between 0 and 5 

( )0, 1.112 19 1.177 5.841⎡ ⎤⎢ ⎥+ × =⎣ ⎦⎣ ⎦
. In this example, the confidence interval boundaries 

appear to be very wide given the estimated value, but the range is what one would expect 
for the predicted response (see Wood, 2005; Agrawal and Lord, 2006; and Geedipally 
and Lord, 2008, for other examples). As noted in Wood (2005), tighter CI for y  could be 

computed using the equations presented in Appendix A of his paper when 1zλ ≤ .  
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Table F6 95% Confidence Interval for the Estimate of the Product 
of Baseline Model and AMFs (adapted from Wood, 2005) 

Parameter Intervals 
Poisson Model 

µ  

1.96

1.96
, z

z

z
ze

e

µ

µ

ν

ν

λ λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

y 0, 19z zyλ ν⎡ ⎤⎢ ⎥+⎣ ⎦⎣ ⎦
 

Poisson-gamma Model 

µ  

1.96

1.96
, z

z

z
ze

e

µ

µ

ν

ν

λ λ
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

m  { }max 0, 1.96 , 1.96z zm z zmλ ν λ ν⎡ ⎤−  + ⎦⎣
 

y 0, 19z zyλ ν⎡ ⎤⎢ ⎥+⎣ ⎦⎣ ⎦
 

Note: 

� zλ = baseline model output ×  AMF1 ×  �. ×  AMFn  or 
1 nz baseline AMF AMFλ µ λ λ= × × ×K  

� zµν = variance estimated from the variance of the Poisson mean ( µν ) (1st row in Table 1) and the 

variance of AMFs. 

� zmν = variance estimated from the variance of the gamma mean ( mν  ) (2nd row in Table 1) and the 

variance of AMFs. 

� zyν = variance estimated from the variance of the predicted response ( yν  ) (3rd row in Table 1) 

and the variance of AMFs; this is dependent upon whether a Poisson or a Poisson-gamma model 
was used for estimating the baseline model. 

� x⎢ ⎥⎣ ⎦  denotes the largest integer less than or equal to x . 

� For computing any other % CI for y , 19 zyν  can be substituted with 
1.0

zy

α ν
α
−

, where 

α = 1 � percentile in %; For instance, for estimating the upper boundary  90% CI, the upper value 

becomes 
1.0 0.1

9
0.1 zy zyν ν− = . 

 
  
SUMMARY 
 
This manuscript has presented a methodology for computing the variance and 95% CI for 
the estimate of the product between baseline models and AMFs when the uncertainty is 
known both for models and the modification factors. The first section explained the 
technique proposed in the HSM to estimate the safety performance of segments or 
intersections using baseline models and AMFs. The second section described the first 
part of the methodology. This section covered the background material on the product of 
independent random variables. The third section presented the second part of the 
methodology, which focused on estimating the variance of baseline models. This section 
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also explained how to compute the 95% CI when the product involved the estimate of the 
Poisson mean, gamma mean, and predicted response. 
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