TRI-COUNTY PARKWAY LOCATION STUDY
VDOT PROJECT R000-96A-102, PE-101, PPMS No. 52405
VDHR FILE NO. 2003-0042

SUPPLEMENTAL ARCHAEOLOGICAL SURVEY AND METAL DETECTING

Prepared for:
THE VIRGINIA DEPARTMENT OF TRANSPORTATION
AND
THE LOUIS BERGER GROUP

Prepared by:
COASTAL CAROLINA RESEARCH
A Wholly Owned Subsidiary of Commonwealth Cultural Resources Group, Inc.

September 2010
TRI-COUNTY PARKWAY LOCATION STUDY
VDOT PROJECT R000-96A-102, PE-101, PPMS No. 52405
VDHR FILE NO. 2003-0042

SUPPLEMENTAL ARCHAEOLOGICAL SURVEY AND METAL DETECTING

Prepared for:
THE VIRGINIA DEPARTMENT OF TRANSPORTATION
87 Deacon Road, Fredericksburg, VA 22405
AND
THE LOUIS BERGER GROUP
801 East Main Street, Suite 500, Richmond, VA 23219

PREPARED BY:
Dennis Gosser, RPA
Principal Investigator
and
Dawn M. Bradley, RPA

COASTAL CAROLINA RESEARCH
A Wholly Owned Subsidiary of Commonwealth Cultural Resources Group, Inc.
1601 Saint Andrew Street, P.O. Box 1198, Tarboro, NC 27886

NCR-0117

September 2010
ABSTRACT

Coastal Carolina Research (CCR), a wholly owned subsidiary of Commonwealth Cultural Resources Group, Inc., conducted archaeological investigations for the proposed Tri-County Parkway in Prince William County, Virginia. The project was conducted for the Virginia Department of Transportation (VDOT) under contract to the Louis Berger Group, Inc., in accordance with Sections 106 and 110 of the National Historic Preservation Act of 1966; the Advisory Council on Historic Preservation’s Section 106 compliance regulations, codified as 36 CFR Part 800; the Archaeological Resources Protection Act (ARPA), 1979; and Section 4(f) of the Department of Transportation Act. The archaeological investigations were conducted according to the Secretary of the Interior’s Standards and Guidelines for Historic Preservation Projects (Federal Register, Vol. 48, No. 190, September 1983, P. 44716-44742, et seq.), the Virginia Department of Historic Resources (VDHR) Guidelines for Conducting Cultural Resource Survey in Virginia (Rev. 2009), VDOT Expectations and Standard Products for Cultural Resources Surveys (January 17, 2007), and the Programmatic Agreement between the Virginia Departments of Transportation and Historic Resources Concerning Interagency Project Coordination (1999). The report was prepared in accordance with the “Guidelines for Preparing Identification and Evaluation Reports for Submission Pursuant to Sections 106 and 110, National Historic Preservation Act, Environmental Impact Reports of State Agencies, Virginia Appropriation Act, 1992 Session Amendments” (VDHR 2003).

The purpose of the survey was to determine if resources on, or eligible for, the National Register of Historic Places (NRHP) are located within the project’s Area of Potential Effects (APE). Archaeological investigations for this project included an archaeological identification survey for three discontiguous areas within a 600-ft corridor along Pageland Lane that CCR was denied access to during a 2006 survey. The APE for these areas involved a total of 18.3 acres. Additionally, a supplemental metal detector survey was conducted within a portion of the previously surveyed APE along Pageland Lane adjacent to the Manassas National Battlefield. The metal detection survey, which extended one mile north from the northern end of the Dunklin Shift segment of the APE, involved a total of approximately 68 acres within a 600-ft corridor.

The archaeological investigations were conducted from July 26 to August 5, 2010 and required 36 person-days. Susan E. Bamann, Ph.D, RPA, was the project manager of the project. Dennis Gosser served as principal investigator and was assisted by crew chief Lindsay Flood and field technicians Jason Krim and James Leamy. Additional background research was also conducted by Bill Hall, Dennis Gosser, Lindsay Flood, Jason Krim, and James Leamy. Report graphics were prepared by Dennis Gosser and Dawn Bradley.

Four previously recorded archaeological sites (44PW0580, 44PW0593, 44PW0594, and 44PW0595) were within or adjacent to the APE. Three of these sites (44PW0580, 44PW0594, and 44PW0595) were identified within the APE; site 44PW0593 is likely located outside the current study area. Sites 44PW0580 and 44PW0594 are recommended as not eligible for inclusion in the NRHP; the portion of site 44PW0595 within the APE does not appear to contribute to the significance of the site.

Twelve isolated artifact locations were recorded during the metal detection survey as well as 11 artifacts associated with site 44PW0594. One positive shovel test (barbed wire fragments) was recorded within site 44PW0594.
TABLE OF CONTENTS

Abstract ... i

List of Figures ... iv

List of Tables .. v

1.0 INTRODUCTION .. 1-1

2.0 NATURAL SETTING ... 2-1
 2.1 Physiography ... 2-1
 2.2 Geology and Soils .. 2-1
 2.3 Hydrology and Vegetation .. 2-1

3.0 PREVIOUS ARCHAEOLOGICAL RESEARCH ... 3-1
 3.1 Introduction .. 3-1
 3.2 Previously Recorded Sites Within or Adjacent to the area ... 3-1
 3.3 Previous Tri-County Location Study Surveys ... 3-3

4.0 HISTORIC CONTEXT .. 4-1
 4.1 Prehistoric Background .. 4-1
 4.1.1 Paleoindian Period (10,000-8000 B.C.) .. 4-1
 4.1.2 Archaic Period (8000-1200 B.C.) .. 4-2
 4.1.3 Woodland Period (1200 B.C.-A.D. 1600) ... 4-3
 4.2 Historic Background .. 4-4
 4.2.1 Settlement to Society (1607-1750) ... 4-4
 4.2.2 Colony to Nation (1750-1789) ... 4-6
 4.2.3 Early National Period (1789-1830) .. 4-7
 4.2.4 Antebellum Period (1830-1861) ... 4-7
 4.2.5 Civil War (1861-1865) .. 4-8
 4.2.6 Reconstruction and Growth (1865-1917) ... 4-13
 4.2.7 World War I to World War II (1917-1945) .. 4-15
 4.2.8 The New Dominion (1945-Present) .. 4-15

5.0 METHODS .. 5-1
 5.1 Introduction .. 5-1
 5.2 Background Research .. 5-1
 5.3 Archaeological Field Methods ... 5-1
 5.4 Laboratory Methods ... 5-3
 5.5 Mapping Disclaimer .. 5-3

6.0 SURVEY RESULTS ... 6-1
 6.1 Introduction .. 6-1
 6.2 Site 44PW0580 ... 6-1
 6.3 Site 44PW0593 ... 6-6
 6.4 Site 44PW0594 ... 6-9
 6.5 Site 44PW0595 ... 6-12
 6.6 Isolated Artifact Finds .. 6-15
 6.7 Summary ... 6-15

7.0 REFERENCES CITED .. 7-1

Appendix A. Artifacts Recovered From the Survey

Appendix B. Selected Shovel Test Profiles
FIGURES

Figure 1-1 General Location of the Project Area ... 1-2

Figure 1-2 Location of the Three Areas Surveyed and Extent of Metal Detection During the Current Study on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle ... 1-3

Figure 3-1 Location of Previously Recorded Archaeological Sites Shown on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle 3-2

Figure 4-1 Captain A. W. Whipple’s 1861 Map of the Battlefield of First Manassas 4-9

Figure 4-2 Captain W. Hoelcke’s Map Showing Thoroughfare Gap, Manassas Station, Bristoe, and Troop Positions on the Second Manassas Battlefield at the Close of August 28, 1862 ... 4-11

Figure 4-3 Pvt. Maj. Geo. L. Gillespie’s 1865 Map Showing the Locations of Warrenton, Madison Court House, Culpeper, Brandy Station, and the Orange and Alexandria Railroad ... 4-14

Figure 6-1 Location of the Positive Metal Detection Hits Recovered and Retained as Shown on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle ... 6-2

Figure 6-2 Location of Previously Recorded Sites as Shown on the VDHR DSS and the Actual Location of Site 44PW0580 on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle ... 6-3

Figure 6-3 Site 44PW0580. View to East. ... 6-7

Figure 6-4 “Officers and Soldiers on the Battlefield of the Secod Bull Run. Recognizing the Remains of Their Comrades” by Edwin Forbes (1863; Library of Congress USZ62-19339) ... 6-8

Figure 6-5 Site 44PW0593 as Shown on the VDHR DSS with 30-foot Diameter Soil Anomaly to the West of the APE ... 6-10

Figure 6-6 Shovel Testing in the Vicinity of Site 44PW0593 .. 6-11

Figure 6-7 Metal Detecting in the Vicinity of Site 44PW0593 .. 6-11

Figure 6-8 Site 44PW0594, Plan View. ... 6-13

Figure 6-9 Site 44PW0594 ... 6-14

Figure 6-10 Interior of Site 44PW0594 Showing Push Piles and Disturbance 6-14
TABLES

Table 6-1 Materials Recovered From Metal Detection Survey ... 6-4
1.0 INTRODUCTION

Coastal Carolina Research (CCR), a wholly owned subsidiary of Commonwealth Cultural Resources Group, Inc., conducted supplemental archaeological investigations for the proposed Tri-County Parkway in Prince William County, Virginia (Figure 1-1). The project was conducted for the Virginia Department of Transportation (VDOT) under contract to the Louis Berger Group, Inc., in accordance with Sections 106 and 110 of the National Historic Preservation Act of 1966; the Advisory Council on Historic Preservation’s Section 106 compliance regulations, codified as 36 CFR Part 800; the Archaeological Resources Protection Act (ARPA), 1979; and Section 4(f) of the Department of Transportation Act. The archaeological investigations were conducted according to the Secretary of the Interior’s Standards and Guidelines for Historic Preservation Projects (Federal Register 1983), the Virginia Department of Historic Resources’ (VDHR) Guidelines for Conducting Cultural Resource Survey in Virginia (Rev. 2009), VDOT’s Expectations and Standard Products for Cultural Resources Surveys (January 17, 2007), and the Programmatic Agreement between the Virginia Departments of Transportation and Historic Resources Concerning Interagency Project Coordination (1999). The report was prepared in accordance with the “Guidelines for Preparing Identification and Evaluation Reports for Submission Pursuant to Sections 106 and 110, National Historic Preservation Act, Environmental Impact Reports of State Agencies, Virginia Appropriation Act, 1992 Session Amendments” (VDHR 2003).

The purpose of the survey was to determine if resources on, or eligible for, the National Register of Historic Places (NRHP) are located within the project’s Area of Potential Effects (APE). Archaeological investigations for this project included an archaeological identification survey for three discontiguous areas within a 600-ft corridor along Pageland Lane that CCR was denied access to during a 2006 survey (Figure 1-2; Luchsinger et al. 2006). The APE for these areas involved a total of 18.3 acres. Additionally, a supplemental metal detector survey was conducted within a portion of the previously surveyed APE along Pageland Lane adjacent to the Manassas National Battlefield (see Figure 1-2). The metal detection survey, which extended one mile north from the northern end of the Dunklin Shift segment of the APE (James et al. 2010), involved a total of approximately 68 acres within a 600-ft corridor.

The archaeological investigations were conducted from July 26 to August 5, 2010 and required 36 person-days. Susan E. Bamann, Ph.D, RPA, was the project manager of the project. Dennis Gosser served as principal investigator and was assisted by crew chief Lindsay Flood and field technicians Jason Krim and James Leamy. Additional background research was also conducted by Bill Hall, Dennis Gosser, Lindsay Flood, Jason Krim, and James Leamy. Report graphics were prepared by Dennis Gosser, RPA and Dawn Bradley, RPA.
Figure 1-1: General Location of the Project Area.
Figure 1-2: Location of the Three Areas Surveyed and Extent of Metal Detection During the Current Study on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle.
2.0 NATURAL SETTING

2.1 PHYSIOGRAPHY

The project area is located to the north of US 29 along Pageland Lane in Prince William County. The project area falls within the Piedmont physiographic region, which is the non–mountainous portion of the older Appalachians that generally slopes from the mountains to the Coastal Plain (Fenneman 1938). The Piedmont is the largest physiographic province in Virginia, bounded to the east by the Fall Line and to the west by the mountains of the Blue Ridge Province. The province is characterized by deeply weathered bedrock and gently rolling topography. Structural control of drainage is usually absent, and the rivers cross belts of gneiss, schist, and slate without change of pattern (Fenneman 1938; Thornbury 1965).

Soil erosion has long been a problem in the Piedmont, primarily due to the rolling hills (Fenneman 1938). It is apparent that the Piedmont has been exposed to chemical weathering for a long period of time because much of the region is covered by a deep layer of saprolitic soil (Fenneman 1938; Thornbury 1965). According to Fisher (1983), the agricultural practices of early settlers in the Virginia Piedmont resulted in severe erosion, soil exhaustion, and siltation of stream valleys. The persistence of regional tobacco cultivation worsened these conditions.

2.2 GEOLOGY AND SOILS

The general geological composition of the project area is characterized by sedimentary and igneous deposits formed during the Mesozoic Era. Specifically, the APE is underlain by sedimentary and intrusive igneous rocks which comprise the Mesozoic Basin (Wilkes 1993). The sedimentary rocks from this formation are primarily composed of material from the Upper Triassic Newark Supergroup, which includes conglomerate, conglomerate with carbonate or greenstone clasts, breccia, sandstone, siltstone, and shale. The intrusive igneous material predominantly consists of diabase from the Lower Jurassic period.

The soils found in Prince William County are primarily derived from sedimentary sandstones and siltstones, with some material evidence of diabase and basalt (Elder 1989). Regional soils are typically classified as part of the Jackland-Waxpool-Legore association or the Haymarket series (United States Department of Agriculture, Soil Conservation Service [USDA, SCS] 1989). The Jackland-Waxpool-Legore association generally consists of very deep, poorly drained to well drained soils that have clayey or loamy subsoils, while the Haymarket Series is characterized as a well drained to moderately well drained silt loam with inclusions of diabase gravel and rock fragments. The range of soil color for these soils extends from a thin, dark brown surface layer to a light yellowish brown to strong brown subsurface deposit. The depth to bedrock for this soil type is usually more than 60 inches.

2.3 HYDROLOGY AND VEGETATION

The APE for this project is situated near Bull Run and its tributaries Catharpin Creek and Lick Branch. Bull Run, in turn, is a tributary of the Occoquan River, which flows southeast toward Occoquan Bay and into the Potomac River, which empties into the Chesapeake Bay. Bull Run also forms the boundary between Prince William, Fairfax, and Loudoun counties.

Tri-County Location Study 2-1 Supplemental Survey and Metal Detecting
The dominant forest type for the Piedmont physiographic region is an Oak-Pine Forest established approximately 3500 B.P. (Braun 1964; Delcourt and Delcourt 1985; Watts 1983). Except on the poorer soils and in drier spots, the pines are usually temporary and through time are replaced by deciduous species.

Modern temperatures were reached in Virginia by about 11,000 B.P. (Delcourt and Delcourt 1985). During the mid-Holocene (or Hypsithermal Interval), from 8500 to 4000 B.P., the climate shifted from cool temperate to warm temperate, creating warmer and drier conditions. During the late Holocene, 4000 B.P. to the present, cooler and moister conditions returned. The modern Oak-Pine Forest was established in the study area by 3500 B.P. (Delcourt and Delcourt 1985).
3.0 PREVIOUS ARCHAEOLOGICAL RESEARCH

3.1 INTRODUCTION

The earliest archaeological fieldwork in the vicinity of the study area consisted of surveys conducted for the Smithsonian Institution in the late nineteenth century (Hodges 1993). Since that time, most archaeological sites have been identified as the result of the activities of avocational archaeologists and researchers involved in cultural resource management.

Numerous archaeological sites have been previously recorded in the vicinity of the current APE in Prince William County. According to information found on the VDHR Data Sharing System (DSS) website, 265 of the sites in the vicinity are considered contributing or noncontributing elements of the Manassas Battlefield Historic District (VDHR# 076-0271). These sites have been discussed in the previous reports generated for this project (Bamann et al. 2003; James et al. 2010; Luchsinger et al. 2006).

3.2 PREVIOUSLY RECORDED SITES WITHIN OR ADJACENT TO THE APE

Four previously recorded archaeological sites (44PW0580, 44PW0593, 44PW0594, and 44PW0595) are located within or immediately adjacent to the current APE (Figure 3-1). Site 44PW0593 was recorded as a Civil War burial site related to the Second Battle of Manassas (Ryder et al. 1992) and was described as a shallow, 30-foot depression located north of a railroad bed (44PW0580). Site 44PW0594 was recorded as an early twentieth-century military latrine and is described on the DSS form as a large rectangular depression; the land owner identified the depression as a pit latrine used by the Army during 1916 maneuvers at what is now the Manassas National Battlefield Park. No subsurface testing or pedestrian surveys were previously conducted on either site. The location of both of these sites was based only on informant information, and the exact dimensions of the sites are unknown.

Site 44PW0595 is located within the northern portion of the current APE (see Figure 3-1). This site, which is only described on a DSS form, is defined as a road cut dating to the nineteenth century. The road is noted as running east to west from a fork in Route 705 to an unknown distance past the Pattie Cemetery (VDHR# 076-0166). An approximately 450-ft-long section of the road is currently incorporated into the driveway of a house located on the property. The property owner identified the road as being called Old Centerville Road. The DSS form indicates that no archaeological testing was conducted on this site.

Site 44PW0580 is an unfinished nineteenth-century railroad tram located within the southern section of the current APE (see Figure 3-1). The site has been subjected to multiple archaeological studies, including a Phase II data recovery and Phase III documentation (Boyd 1994; Bushey 1993). Shovel test and test unit excavations across the site yielded only one hand wrought nail and three fragments of solarized glass. This site was noted as eligible for the NRHP under Criteria A and D, as a contributing element of the Manassas Battlefield Historic District.

A portion of the APE is also contained within the boundaries of Manassas Battlefield Historic District (VDHR# 076-0271). Approximately 5,073 acres of the battlefield site are located within the defined boundaries maintained by the National Park Services as the Manassas National Battlefield Park, while approximately 1,396 acres are owned by either the Commonwealth of Virginia or private property owners.
Figure 3-1: Location of Previously Recorded Archaeological Sites Shown on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle.
3.3 PREVIOUS TRI-COUNTY LOCATION STUDY SURVEYS

In 2003, CCR conducted a reconnaissance survey and prepared a cultural resources overview for the proposed Tri-County Parkway in Prince William and Fairfax counties (Bamann et al. 2003). The overview report contains a full list of previously recorded archaeological and architectural resources, as well as battlefields and historic districts in the study area. The review of the previously recorded archaeological resources in the study area indicated that resources from all time periods were present. However, the extensive growth of the area has affected not only the built environment, but the archaeological resources as well. Many archaeological sites have already undoubtedly been destroyed by the rapid expansion of development into the project area. A total of 14 previously recorded sites in the study area were found to be listed on the NRHP or eligible for listing on the NRHP.

In 2006, CCR conducted the archaeological survey for the proposed Tri-County Parkway (Luchsinger et al. 2006). During this survey, eight previously recorded archaeological sites (44LD0853, 44LD0854, 44LD1027, 44LD1186, 44LD1187, 44PW0579, 44PW0580, and 44PW0623) were noted as located within the APE. Data recovery excavations have been conducted on site 44LD0853, a late eighteenth-century impoverished tenant or slave site (Jirikowic 2005). Subsequent investigations of the site yielded a portion of an intact dwelling foundation. Site 44LD1187, a late eighteenth-century to early nineteenth-century dwelling, is considered potentially eligible for the NRHP (Clem 2004). Site 44LD0854 is an early nineteenth-century domestic site, 44LD1027 is an artifact scatter site with both a Native American and a nineteenth- to early twentieth-century component, and 44LD1186 is a late nineteenth- to early twentieth-century domestic farmstead. These three sites were determined to be not eligible for the NRHP (Bushey et al. 1993). Site 44PW0579 consisted of a Native American lithic scatter of an indeterminate period and a cemetery associated with the Civil War, site 44PW0580 is an incomplete portion of the mid-nineteenth-century Manassas Gap Railroad, and site 44PW0623 is a historic cemetery of indeterminate age likely associated with the Civil War. Site 44PW0579 was recommended as eligible for the NRHP under Criterion A as a contributing element to the Manassas Battlefield Historic District (Bushey et al. 1993). Sites 44PW0580 and 44PW0623 were also considered potentially eligible for the NRHP as contributing elements of the Manassas Battlefield Historic District (Bushey et al. 1993). During the 2006 survey, only one new site (44LD1363) was recorded. This site, a mid-nineteenth-century mill race associated with the Patton Mill, was recommended as not eligible for the NRHP.

In 2007, CCR conducted archaeological evaluations on two of the previously recorded sites (44PW0579 and 44PW0623) considered eligible for the NRHP (James et al. 2010). Site 44PW0579 included a monument erected for Timothy Dunklin, a private killed during the Second Battle of Manassas. During the archaeological evaluations, only one presumed gravesite was encountered, that of Timothy Dunklin. Despite extensive excavations, no human interments were encountered at either site 44PW0579 or 44PW0623. No evidence of a Native American component was found at site 44PW0579. Based on the absence of additional burials, no further archaeological investigations were recommended. Due to the presence of the Dunklin monument, site 44PW0579 (VDHR# 076-0271-0062) is still considered eligible for the NRHP as a contributing element of the Manassas Battlefield Historic District. However, archaeological monitoring was recommended during future ground disturbance activities within the APE.

In 2010, CCR conducted a systematic metal detection for the Tri-County Parkway realignment for avoidance of the Dunklin monument and the associated burial of Timothy Dunklin located on site...
44PW0579 (James et al. 2010). The area had been previously surveyed and no additional shovel tests were required. The metal detection survey was conducted at the request of VDOT due to the property’s proximity to the Manassas National Battlefield Park and the potential for additional Civil War related elements to be present. Metal detection on transects spaced 75 feet apart throughout the APE recorded 108 positive hits for metal objects. Analyses of the artifacts recovered indicated that none could be positively associated with the Civil War or the two previously recorded sites (44PW0579 or 44PW0623) located within the APE. No new sites were recorded. The recovered artifacts were likely deposited as part of more recent activities, such as land filling and hunting.
4.0 HISTORIC CONTEXT

4.1 PREHISTORIC BACKGROUND

4.1.1 Paleoindian Period (10,000-8000 B.C.)

Native American occupation of eastern North America dates to at least 13,450 calendar years ago (approximately 11,500 B.C.), the conventional temporal boundary associated with the Clovis tradition (Anderson et al. 2007; Goodyear 2006). The evidence for occupations at this time includes fluted projectile points (i.e., the Clovis type) (Griffin 1967; Justice 1987). These points are generally scarce and often occur as isolated finds in disturbed surface contexts. Geographic concentrations of fluted points, including the Clovis type and related types such as Cumberland, occur in the eastern half of the United States. Nearly 1,000 fluted projectile points have been reported from Virginia (Anderson and Faught 1998). Other Paleoindian projectile point types found in Virginia are Mid-Paleo, Dalton, Hardaway-Dalton, and a type with affinities to Folsom (Barber and Barfield 1989; McAvoy and McAvoy 1997; McCary 1996). In Virginia, the majority of these points were manufactured from cryptocrystalline lithic material. Tools associated with the Paleoindian period include scrapers, gravers, wedges, unifacial tools, hammerstones, abraders, and a variety of “banging, smashing, chopping, and hacking tools” (Gardner 1989:18).

Evidence for much earlier New World lithic industries suggests that the makers of fluted points may represent relatively late migrations to the New World. Alternatively, the distinct fluted point technology may have developed within the New World in the context of populations established prior to the Clovis temporal boundary (Anderson and Faught 1998; Goebel et al. 2008; Meltzer 1989). The Cactus Hill site in southeastern Virginia has produced lithic artifacts (prismatic blades, polyhedral cores, and bifaces) from sandy deposits below intact Clovis horizons (McAvoy and McAvoy 1997). Radiocarbon dating suggests that the sub-Clovis material may date to as early as 17,000 radiocarbon years before present (RCYBP), which is significantly earlier than the Clovis temporal boundary (Goodyear 2006; McAvoy and McAvoy 1997). This stratified site is situated on a sand dune along the Nottoway River. Stratification was the result of relatively steady aeolian sand deposition throughout the occupation of the site (McAvoy and McAvoy 1997; Wagner and McAvoy 2004). The Topper site, located in the Piedmont of South Carolina, has also produced evidence for pre-Clovis occupations (Goodyear 1999, 2000, 2006). The evidence includes concentrations of unusual microlithic artifacts reflecting a “smash-core” technology. The artifacts were recovered beneath Clovis-age sediments on a scoured, gray, silty clay Pleistocene terrace and in alluvial sand just overlying this terrace. The SV-2 site, located in the Saltville Valley (Ridge and Valley province) of southwestern Virginia, has yielded a distinctive concentration of proboscidean bone in association with a possible bone tool yielding a bone collagen date of 14,510±80 RCYBP (Goodyear 2006; McDonald 2000). Overlying strata have yielded additional evidence, including microdebitage and exotic chert, suggesting the possibility of pre-Clovis occupations of the Saltville Valley (McDonald 2000). Given the varied evidence from these widely distributed sites, Goodyear (2006) recommends a more aggressive program of survey and testing for appropriate landforms with Pleistocene-aged deposits.

Stratified sites containing Paleoindian occupations from Clovis times or later include the Williamson site and the Thunderbird and Fifty sites of the Flint Run Complex in the Shenandoah Valley (Barber and Barfield 1989; Carr 1975; Gardner 1974; Johnson 1996). Evidence from these sites has been used to construct what has been referred to as the “Flint Run Lithic Deterministic Model” of Paleoindian settlement strategies (Anderson and Sassaman 1996:23). In this model, Paleoindian and Early Archaic settlement patterns were driven by the locations of the
high-quality lithic material. Five functionally distinct site types have been identified in the Flint Run Complex: quarries, reduction sites, quarry-related base camps, maintenance camps, and non-quarry associated base camps (Gardner 1989). The small, highly mobile bands characteristic of Paleoindian times were also focused on food collection and the hunting of animals such as caribou, deer, elk, and moose (Boyd 1989; Turner 1989). Therefore, hunting and gathering, as well as lithic procurement played a significant role in settlement patterns. Sites such as base camps are often found on resource-rich floodplains and adjacent alluvial fans (Turner 1989).

4.1.2 Archaic Period (8000-1200 B.C.)

The Archaic period (8000–1000 B.C.) is divided into three phases: Early, Middle, and Late. The onset of this period occurred during a cycle of climatic change. During the time of the Early Archaic (8000–6800 B.C.), a shift occurred from boreal forests to northern hardwoods. The tool kits from the Early Archaic are similar to those from the preceding Late Paleoindian tradition, as are the settlement and subsistence patterns. Existing data suggest that there was no distinct division between the two periods (Claggett and Cable 1982). Instead, the Early Archaic is marked by an expansion of the size and number of sites (Egloff and McAvoy 1990).

Small corner-notched projectile points (such as Palmer and Kirk) and an increase in the use of hafted endscrapers (Coe 1964) typify the Early Archaic period. Near the end of this period, inhabitants of the region began utilizing a wider variety of lithic resources and relying less heavily on the cryptocrystalline materials that had been so important during the Paleoindian period. Also during this period, ground stone tools, such as adzes, celts, axes, and grinding stones, made their first appearance.

The Middle Archaic period (6800–3500 B.C.) coincides with a shift in climatic conditions to the warmer and drier climates that are prevalent today. Settlement and subsistence patterns show a high degree of continuity with those of the Early Archaic period. It appears that Middle Archaic sites may have been occupied for longer periods of time than their earlier counterparts and may have been more frequently located in the floodplains along larger streams and rivers. Possibly due to the expansion of deciduous forests, sites in upland settings became more common than they had been previously, and there is a hypothesized growth in population that is thought to have been quite pronounced in parts of western Virginia. There is also evidence that inhabitants of the Coastal Plain may have also expanded their territories in order to make use of new environmental settings created by change in climatic conditions (Custer 1990). Characteristic projectile point types of this period include Stanly, Morrow Mountain, Guilford, Halifax, St. Albans, LeCroy, and Kanawha.

The Late Archaic period began in Virginia around 3500 B.C., and, although the period is marked by distinctive projectile point types, adaptations of this time differ little from those of the Middle Archaic period. In the study area, Late Archaic peoples were adapted to the Eastern Deciduous Forest environment characterized by dense stands of hardwood, nut-bearing trees. Nuts, deer, and turkeys were the most important sources of food (Mouer 1991). According to Mouer (1991:10), the primary attributes of Late Archaic culture are “small-group band organization, impermanent settlement systems, infrequent aggregation phases, and low levels of regional or areal integration and interaction.” Characteristic projectile points include Halifax, Lamoka, Merom, Lackawaxen, and Brewerton (Mouer 1991).

The time from ca. 2500 B.C. until 1200 B.C. is called the Transitional period by some researchers in Virginia (Mouer 1991). By 2500 B.C., the rise in sea level had dramatically altered the Atlantic coast, creating large estuaries and tidal wetlands, which, in turn, vastly increased coastal
resources such as fish and shellfish. Anadromous fish runs extended from the coast, up the rivers, to the foothills of the Blue Ridge. With this environmental change came a marked change in adaptation. Populations living in the Transitional period developed estuarine and riverine adaptations and sites of this period are located primarily in river valleys, at the lower reaches of the Inner Coastal Plain, tributaries of major rivers, and near swamps. It is assumed that fish began to play a significantly larger role in the subsistence system. Although sites of this period tend to be larger than those of previous periods, and there is evidence for an increase in population, there is no evidence of year-round sedentism (Mouer 1991). The Savannah River point, often associated with soapstone vessels, is characteristic of the Transitional period.

4.1.3 Woodland Period (1200 B.C.-A.D. 1600)

Early Woodland (1200–300 B.C.) settlements in the Virginia Piedmont appear to be evenly divided between sites associated with major rivers and those in more interior areas (Klein and Klatka 1991). The population growth that began in the Middle Archaic appears to have continued into the Early Woodland. There is evidence that inhabitants of Coastal Plain and Piedmont regions began to develop a sedentary lifestyle during this period (Klein and Klatka 1991; Mouer 1991). Although floral and faunal remains are not commonly found in Early Woodland sites, there is evidence that subsistence adaptations became less diffuse during this time, and it has been suggested that intentional clearing of riverine habitats may have increased the availability of edible weedy plants such as goosefoot, knotweed, and sunflower (Stevens 1991). Large, broad points were replaced by smaller notched, stemmed, and lanceolate points, and steatite-tempered ceramics (Marcy Creek wares) were introduced ca. 1200 B.C. (McLearen 1991). Soapstone-tempered Selden Island pottery appeared, soon followed by Elk Island pottery. Storage and cooking pots have been identified from the Early Woodland components of a few sites, although the rock features typical of the Archaic period continue to be more common (McLearen 1991).

Throughout Virginia, the Middle Woodland period (300 B.C.–A.D. 900) is marked by a series of unifying characteristics, such as “interregional interaction spheres, including the spread of religious and ritual behaviors which appear in locally transformed ways; localized stylistic developments that sprung up independently alongside interregional styles; increased sedentism; and evidence of ranked societies or incipient ranked societies” (McLearen 1992:55). The Middle Woodland period is also marked by the introduction of triangular projectile points throughout Virginia, and some horticulture may have been practiced. The settlement systems of the Piedmont, and also of the Coastal Plain, show a dichotomous use of both long-term base camps and short-term procurement camps. In spite of these common traits, it is during the Middle Woodland that clear regional trends in ceramics first become distinct. Coastal Plain and Piedmont ceramic styles can be distinguished, as well as north-south differences that correspond to river drainages emptying into either the Chesapeake Bay or Albemarle Sound. In the Potomac and James River valleys, the Middle Woodland is marked by a predominance of quartz- and sand-tempered, net-impressed ceramics (Hantman and Klein 1992). After A.D. 500, the diversity of surface treatments increases, and “stylistic analyses of ceramics within the region suggest that the Potomac, the Rappahannock, and the Upper Dan were three slightly different subareas within the physiographic province of the Piedmont” (Hantman and Klein 1992:151).

During the Late Woodland period (A.D. 900–1500), diversification in surface treatment of ceramics continues. Cord-marked and fabric-impressed ceramics occur throughout Virginia, and “linear and geometric designs characterize both the incised and corded decorative motifs of the Late Woodland . . . [implying] pan-regional interaction” (Hantman and Klein 1992:147). However, fabric-impressed and simple-stamped ceramics occur less often in the northern Piedmont than in...
the James River region, and the application of collars and linear and geometric designs is more common in the Potomak region than it is to the south (Hantman and Klein 1992).

Although numerous Late Woodland sites have been located in the Virginia Piedmont, there is little known of features and posthole patterns because of destruction due to erosion (Hantman and Klein 1992). What is known, however, is that during the Late Woodland period, the Piedmont experienced a dramatic growth in population. The settlement pattern became more sedentary, and villages were increasingly associated with major rivers. Horticultural activities increased during this time, although hunting and gathering were still important elements of the subsistence system. There also appears to have been a decrease in long-distance exchange during this time. There is no consensus regarding the level of Piedmont sociopolitical organization during the Late Woodland, with various researchers interpreting the data as evidence of everything ranging from egalitarian to hierarchical societies.

4.2 HISTORIC BACKGROUND

4.2.1 Settlement to Society (1607-1750)

At the time of European contact, the area encompassing the northern portion of Virginia was occupied by Algonquian-speaking tribes in the Tidewater and Siouan-speaking tribes west of the Fall Line (Bushnell 1935, 1937; Walker 1981). One of the dominant Native American tribes in the area at the time of European contact was the Dogue (sometimes spelled “Doge”). Tauxenent, the primary village of the Dogue, was located along the Occoquan River. Before John Smith departed from Jamestown in 1608 to explore the Potomac River, friendly natives warned him that the chief of the Algonquian Federation, Powhatan, planned to betray him. Smith heeded this warning and sailed past the leading town of the Federation. When he reached Dogue Island, at the confluence of the Potomac and Occoquan rivers, Smith encountered the Dogue Indians (Waltemyer 1995). Although part of the Algonquian Federation, at the time of Smith’s explorations the Dogue were not on good terms with Powhatan and was able to trade with the Dogue for corn to feed the English colonists (Brown 1994; Waltemyer 1995). At contact Smith judged the size of the Dogue tribe as being between 135 to 170 people, 40 of whom were bowmen (Brown 1994).

Initially the Dogue provided the settlers with valuable aid (Brown 1994:7). The settlers learned from the Native Americans how to farm and where and how to catch fish and game. Even many of the local names are derived from Dogue words. Unfortunately, this friendship between the Dogues and the colonists did not last long. Settlement along the Potomac River began on the Maryland side of the river in the 1630s, but hostile Native Americans hampered settlement of the Virginia side of the river. The Europeans solved this problem through force, and the area was opened to new settlement in 1644 when the Potomac and Dogue natives were defeated (Waltemyer 1995). European diseases also devastated the Dogue, who began to leave their villages and relocate further west before the beginning of the eighteenth century (Brown 1994).

The mid-seventeenth century was a time of exploration into the interior of Virginia. This period saw the development of land- and stock-companies for trading and colonizing and a tremendous business expansion. The impetus for the explorations during this time was the desire for quick profits and more land (Alvord and Bidgood 1912). The first official exploration to the interior took place after 1648, when the governor had heard accounts of lands beyond the mountains. At that
time, the frontier was at the falls of the various rivers. Native American uprisings limited settlement in much of the region until the eighteenth century (Ratcliffe 1978).

During the mid-seventeenth century, land between the Potomac and Rappahannock rivers (the Northern Neck of Virginia) was held as a proprietary by a group of wealthy Englishmen. Control of the territory was eventually left largely in the hands of the Fairfax family (Sweig 1992). Robert Carter, an agent for Lady Catherine Fairfax, was one of the largest landholders in the Northern Neck. Lands patented by Carter covered approximately 90,000 acres in the area of today's Prince William, Fauquier, and Fairfax counties. Lands in Prince William County patented in the name of Carter or one of the members of his family covered nearly 70,000 acres along Kettle Run, Broad Run, and Bull Run (Ratcliffe 1978).

By 1670 many Native American groups living in the study area had moved south because of pressure from bands of Iroquois entering the region from the north. Before 1684, the western portion of the project area saw few Iroquois, since the main Native American path was along the Fall Line. In 1684, however, as a result of the Treaty of Albany, New York, the Iroquois agreed not to "come near the Heads [of navigation] of your Rivers, nor near your Plantations, but keep at the Foot of the Mountains" and to "go a Path which was never trod before" (Scheel 1982:7).

Early settlers of the region were primarily English, but they were eventually joined by settlers of German, Dutch, Swiss, and French ancestry (Steadman 1964). By the late seventeenth century, frontier forts of the Virginia interior fell into disuse and armed patrols were subsequently used to watch for possible Native American attacks or uprisings. This strategy was successful for a time, but an increase in attacks in the 1690s eventually led to the need for further exploration of the interior (Williams 1938).

Due to the increase in Native American uprisings, the colonial governor sent two representatives, Giles Vandercastel and Burr Harrison, to make contact with the Conoy Piscataways. After various displacements of their settlement due to infringing groups, the Piscataways were living on Conoy Island in the Potomac River. As the representatives traveled to Conoy Island, through what is today Loudoun County, they made a detailed record of the route and the environs. This record "is considered to be of primary importance in Loudoun's history" (Williams 1938:21).

Huguenot refugees were eventually placed along what was then Virginia's frontier, in part to provide protection from Native Americans traveling up and down the Carolina Road (Evans 1989). This road, whose path is roughly traced by US 15 today, was originally a path taken by groups of Native Americans traveling between the Potomac River area, through Virginia, to the Carolinas. It later became one of the major roads taken by early settlers as the frontier was pushed further inland (Ratcliffe 1978). Many of the plantations established on Carter's Bull Run tracts, such as Burnside, Waverly, Mill Park, Mt. Atlas, Evergreen, and Snow Hill, were served by the Carolina Road (Prince William County Historical Commission 1996). In 1722, the Five Nations of the Iroquois signed an agreement that "none of their Indians shall, at any time hereafter, cross Potowmack river, nor pass eastward of the great ridge," effectively ending the threat of attack by Native Americans in the Piedmont frontier (Scheel 1982:8). With this threat removed, the settlement of the region accelerated.

Prince William County was formed in 1730 and included the area from Aquia Creek to the Potomac River (Clark and Arrington 1933). Around this time, the area from the Potomac River south to Wheatland (in present-day Loudoun County) was settled largely by people of German
ancestry moving down from Pennsylvania and New York (Head 1998 [1908]). The rest of the county was occupied primarily by English settlers. Although the population in the western portion of Prince William County was still sparse, the eastern portion of the county was apparently sufficiently populated to justify the construction of a mill at some time before 1749. Chapman’s Mill, later known as Beverley’s Mill, was built to the west of the current study area near the border between present-day Fauquier and Prince William counties (Ratcliffe 1978). Settlers often had to travel many miles to have their grain ground during this time (Head 1998 [1908]).

Fairfax County was formed in 1742 from part of Prince William County and was probably named for Thomas, Sixth Lord Fairfax (Sweig 1992). Fairfax County originally included the land that extended from the Potomac and Occoquan rivers to the Blue Ridge Mountains and also encompassed present-day Loudoun and Arlington counties, and the cities of Alexandria, Falls Church, and Fairfax (Davis 1957). The first Fairfax County courthouse was established near present-day Tyson’s Corner (Sweig 1992).

Although Quaker and German settlers in the upper portions of present-day Loudoun County cultivated grain crops such as wheat (Marsh 1998), tobacco served as the agricultural staple and mainstay of the economy in the more heavily populated areas to the south and east. Because the many rivers made it possible for ships to reach plantations, there was little need to develop towns as trading centers during the early years of settlement (Clark and Arrington 1933). After 1730, however, tobacco shipments were required to be officially inspected and were not accepted without inspection certificates, issued at tobacco warehouses (Evans 1989). Dumfries, which is southeast of the current study area, was possibly the earliest town established in Prince William County. This town was formally established in 1749 and served as the county seat for many years (Clark and Arrington 1933; Hagemann 1988).

4.2.2 Colony to Nation (1750-1789)

Before the Revolutionary War, the state annually exported over 55,000 hogsheads of tobacco, valued at almost three times that of the next most valuable commodity. Tobacco remained a leading economic product during the latter half of the eighteenth century, but production was down from 1758, when over 70,000 hogsheads were exported (Jefferson 1861). After tobacco, wheat was the next most important export of the period, followed by Indian corn and lumber and naval stores. Pelts of deer, beavers, otters, muskrats, raccoons, and foxes were prepared, but only about 180 hogsheads were exported. Minor exports were pork, flaxseed and hemp, pit coal, pig iron, peas, beef, sturgeon, white shad, herring, and brandy and whiskey (Jefferson 1861).

By 1773 the Potomac Path was named an official mail route. This demonstrated its importance to the colony (Waltemyer 1995). About the same time, the name of the road was changed to the King’s Highway. The mail carrier, a covered wagon pulled by four horses, could also carry 12 passengers. When the wagon made the trip between Alexandria and Fredericksburg, it left before dawn and did not reach its destination until well after nightfall (Brown 1994). During the Revolutionary War, Generals Washington and Rochambeau used the King’s Highway in their journey from Mount Vernon to Williamsburg and eventually to Yorktown. In addition, Rochambeau’s French soldiers traveled south to Yorktown on this road, and then returned on it after the British surrender (Waltemeyer 1995).
4.2.3 Early National Period (1789-1830)

During the beginning of this period the Upper Piedmont of Virginia was becoming less exclusively rural and agricultural. Towns and villages grew in size and as a result, public buildings associated with governmental, religious, and educational activities became more common. For example, by 1790, the population of Prince William County was approximately 11,000 people, and many of the county’s rural crossroads communities were developing into small towns (Evans 1989). William Skinner (or Skinker) laid out the town of Haymarket in the area adjacent to the Red House Tavern. The tavern served as a popular meeting place during this period and may have been the location of a market where farm surplus could be exchanged (Gropman 1990; Hageman 1988). Haymarket, chartered in 1799, was originally laid out into 140 lots and once boasted two tracks for racing horses and the district court for Prince William, Fairfax, and Loudoun counties (Evans 1989; Gropman 1990).

Overland transportation improved dramatically during the late eighteenth and early nineteenth centuries. The earliest private turnpike charter was granted in 1796 to the “President, Manager, and Company of the Fairfax and Loudoun Turnpike Road” (Sweig 1992:148). This road was not actually built until after the turn of the century. Roads in more sparsely populated regions were still a major concern around the turn of the century. For example, residents of Loudoun County stated that during the winter of 1792/1793, roads through their areas to Alexandria and Dumfries were in such bad condition that they were frequently impassable (Scheel 1987).

The railroads reached Virginia in 1827 when the Baltimore and Ohio Railroad Company entered the state, and shortly thereafter railroad companies began to be chartered in the state itself. Between 1832 and 1837, 35 railroad companies were chartered (Pawlett 1977).

At the beginning of the nineteenth century, tobacco was being replaced by wheat as the major crop in much of the region, and plantations with large numbers of slaves were less common (Evans 1989; Sweig 1992). The growth of the port of Alexandria relied heavily on the production of wheat and flour (Sweig 1992). More than half of the wheat in North America was grown in Maryland and Virginia in the early nineteenth century, and Alexandria was the most important port for products from the Shenandoah Valley (Steadman 1964).

A collapse of foreign markets for wheat and tobacco resulted in a depression in Virginia around 1820 that continued to affect families into the 1840s. Many planters were forced to sell land and slaves, and many younger people left worn-out fields when they moved west. Although the economy was still dominated by scattered plantations worked by slaves, settlement and land use patterns began to reflect a more diversified agricultural economy and household self-sufficiency (Schlotterbeck 1980). The dream of transporting the Tidewater plantations and lifestyle to the Piedmont had been abandoned, and those that persisted in following the tobacco culture generally moved on to Kentucky or south to Alabama (Moore 1976).

4.2.4 Antebellum Period (1830-1861)

During this period, improvements to transportation brought about by the railroad were heavily influencing the growth of the region. Gainesville, in Prince William County, was originally established as a railroad depot when the railroad built its line through land owned by Thomas Gaines in 1850 (Hagemann 1988). The Orange and Alexandria Railroad reached Tudor Hall, later known as Manassas, in 1852 (Evans 1989). The junction of the Manassas Gap and Orange
and Alexandria railroads at this location spurred the growth of this hamlet (Salmon 1994; Evans 1989). Although an inn and a tavern were built at the junction during the 1850s, it was not until after the Civil War that the town saw significant growth. The Southern Railway now follows the old roadbed of the Orange and Alexandria Railroad (Ratcliffe 1978). Dairy farming began to gain in importance in Prince William County during the 1850s, with the railroad facilitating the distribution of products. Milk trains picked up milk at both the regular passenger stops and at special milk stops (Ratcliffe 1978).

4.2.5 Civil War (1861-1865)

4.2.5.1 Battle of First Manassas

When the Civil War began in April 1861, most Americans did not expect it to last long. The Confederate capital was established at Richmond, just 100 miles from the Federal capital at Washington, D.C. The proximity of the two capitals ensured that there would be a conflict before the end of the summer. The Federal troops immediately crossed the Potomac River and began the construction of fortifications in the Arlington and Alexandria areas to protect the capital (Robertson 1990). Brigadier General Irvin McDowell was placed in charge of the growing fortifications. General Robert Patterson was eventually placed in charge of a smaller force upstream at Harper's Ferry.

To the south of the Federal fortifications and Washington, D.C., the Confederate forces rallied at the line of Bull Run, where they secured the railroad center of Manassas Junction in Prince William County. Brigadier General P. G. T. Beauregard took command of the forces at Bull Run in June 1861, while a smaller force was assembled upstream at Harper's Ferry under Brigadier General Joseph E. Johnston (Robertson 1990). By the end of June, the Confederate forces had established massive fortifications at Manassas defended by six brigades of troops.

By July 1861, the Federal government, led by President Abraham Lincoln, was advocating a forward movement of McDowell's 35,000 troops. Despite McDowell's reservations concerning the preparedness of his troops, the Federal army moved out on July 16. McDowell's main body occupied Centerville on July 18, and for the next few days, the Confederate forces occupied the west bank of Bull Run Creek as they increased their forces with more reinforcements (Figure 4-1) (Wilshin 1953). The Union troops advanced southwest from Centerville and tried to cross Blackburn's Ford, but were unable to drive off the Confederate defenders. This Federal action was a reconnaissance-in-force preceding the Battle of Manassas. A consequence of McDowell's failure to cross at Blackburn's Ford was his decision to attempt to turn the Confederate's flank at Manassas (Civil War Sites Advisory Commission 1999a). This plan of attack also included General Patterson and his forces at Harper's Ferry trying to prevent Johnston's unit from joining forces with Beauregard at Manassas. By early July, Patterson had seized Harper's Ferry and pushed Johnston's forces back to Winchester (Robertson 1990). McDowell's delay at Centerville allowed Beauregard to gather the scattered Confederate troops, and on July 18, the Confederate government ordered Johnston to abandon Winchester and join Beauregard at Manassas Junction (Robertson 1990). Johnston left a cavalry screen to deceive Patterson and marched his troops to the town of Piedmont, where trains of the Manassas Gap Railroad were waiting to transport the troops. The first brigade, led by Brigadier General Thomas Jackson, arrived in Manassas Junction on July 19 (Robertson 1990).

McDowell and the Federal army launched their attack on the Confederate line on July 21, unaware that Patterson had not detained Johnston's force and that the Confederate forces at Bull
Figure 4-1: Captain A. W. Whipple’s 1861 Map of the Battlefield of First Manassas. Also Shown are the locations of Centreville, Blackburn’s Ford, the Stone Bridge, Matthews Hill, and Henry Hill.
Run had grown in number. McDowell planned for one division to make a feint at the Stone Bridge on the Warrenton Turnpike, while the main force consisting of two divisions crossed at Sudley's Ford and slammed into the Confederate left flank (see Figure 4-1). The Federal plan was a good one, but Colonel Nathan Evans, the Confederate officer charged with the defense of the Stone Bridge, was not fooled by the poorly executed Federal feint. Evans left a small holding force at the Stone Bridge and met the leading elements of the Union flanking force near Matthews Hill, one mile south of Sudley Ford. Evans held the line alone until Beauregard sent reinforcements to the battle. Two brigades under the direction of Generals Bee and Bartow joined Evans at Matthews Hill (Robertson 1990). The difference in numbers eventually pushed the Confederate army from Matthews Hill and into full retreat. The Confederate force was driven back to Henry Hill, south of the Warrenton Turnpike, where General Jackson waited (Robertson 1990). The remnants of the retreating brigades rallied on Jackson's line, and by early afternoon a force of nearly 7,000 men was assembled on Henry Hill. It was here that General Jackson earned the name "Stonewall." General Bee remarked, "There is Jackson standing like a stone wall," as his brigade retreated to Henry Hill (Robertson 1990).

The intensity of the fighting increased around Henry Hill, where the Confederate forces concentrated. The arrival of fresh troops on the Confederate left resulted in the breakdown of the Federal right. The Federal troops were unable to continue their advance any further and in the afternoon were forced to retreat from the field at Henry Hill to the Stone Bridge (Robertson 1990). The Confederate forces were in no condition to pursue the fleeing Federal forces, and no attempt to pursue them was made (Davis 1977).

4.2.5.2 Battle of Second Manassas

On August 28, 1862, an important confrontation took place in western Prince William County at Thoroughfare Gap (Figure 4-2). Major General James Longstreet’s Corps of the Army of Northern Virginia was on the way to join the corps of Major General Thomas “Stonewall” Jackson, which had been operating at and in the vicinity of Manassas Junction. Longstreet’s corps planned to march to their rendezvous with Jackson via Thoroughfare Gap, a passage through the Bull Run Mountains. However, Thoroughfare Gap was now occupied by Federal troops (Scheel 1985). The previous June, Frank Leslie’s Illustrated Weekly referred to the gap as the “Virginia Thermopylae” because a small body of men could hold the position against a much larger force (Scheel 1985:38). In order to deal with the Federals holding Thoroughfare Gap, the Confederates sent troops north to Hopewell Gap, while others advanced along a trail running through Broad Run Mountains. The strong position was outflanked and the Federals prudently retreated. The significance of the Confederate triumph at Thoroughfare Gap was immense, for Longstreet’s corps was able to continue their march and unite with Jackson’s hard-pressed corps already fighting the Battle of Second Manassas (Scheel 1985).

Jackson’s corps had passed through Thoroughfare Gap, before it was defended, a few days previous and had begun disrupting the supplies of General John Pope’s Army of Virginia. This was part of a plan devised by General Robert E. Lee after he defeated Major General George B. McClellan’s Army of the Potomac during the Seven Days campaign near Richmond (Hennessy 1990). McClellan’s force of 120,000 men was now en route to join Pope’s new Army of Virginia, which numbered 63,000 men. General Lee’s plan was to defeat Pope with the combined forces of Major General Thomas “Stonewall” Jackson (24,000) and Major General James Longstreet
Figure 4.2: Captain W. Hoekoe's Map Showing Thoroughfare Gap, Manassas Station, Bristoe, and Troop Positions on the Second Manassas Battlefield at the Close of August 28, 1862.
31,000) before the Federal armies combined (Hennessy 1990). Pope's intention was to defeat the Confederate force under Jackson, but Jackson maneuvered quickly behind Pope via the Thoroughfare Gap to Manassas Junction and sacked the Federal military supplies stored there (Hennessy 1990). Pope was compelled to abandon his defensive line along the Rappahannock River and move to meet the threat in his rear (Civil War Sites Advisory Commission 1999b). Jackson then returned to an area west of the Manassas battlefield and secreted his entire army in the woods behind an unfinished railroad spur of the Manassas Railroad. He waited there for General Lee and the rest of the Confederate army and also for General Pope (Hennessy 1990).

The route taken by Jackson to the rear of Pope's army was deceptive. He arrived in Salem, west of the Bull Run Mountains, on August 25. He then led his troops southeast through Gainesville following the Manassas Gap Railroad, which runs parallel to Interstate 66. Jackson's Corps proceeded to lightly guarded Bristoe Station and by August 27 was in the process of sacking Manassas Junction (see Figure 4-2). General Pope was unable to contain the Confederate forces. Jackson's force had "covered fifty-four miles in only thirty-six hours of marching. They had ruptured the Union supply line, captured a sumptuous depot, feasted beyond imagination, and fended off Yankee advances from both the east and west" (Hennessy 1993:137).

Jackson's strategically secure position in the woods near the unfinished railroad bed was also near a major route of Federal advance, the Warrenton Turnpike (now US 29). His position and his understanding of Lee and Longstreet's position and arrival date gave him a tactical advantage over a superior force. In addition, the likelihood of Longstreet's progress being impeded was reduced when Pope ordered McDowell to assemble his forces in Centerville. Longstreet was taking the same route to the Manassas battlefield as Jackson with no alteration of his timetable.

On August 28, Brigadier General Rufus King led his First Division Brigade up the Warrenton Turnpike past the mile-long front of anxiously waiting, but concealed, Confederate forces. Jackson saw his opportunity and ordered his troops to attack and open the battle. The savage fight continued until dusk. On the 29th, Jackson was in position along the unfinished railroad grade. Pope hurled his men against this position, but although there were momentary breaches, the Federal forces were repulsed. During the afternoon, Longstreet arrived on the battlefield and was deployed south of the Warrenton Turnpike on Jackson's right flank (see Figure 4-2). Longstreet demurred to Lee's urging to attack and awaited a decisive opportunity. The next morning was quiet and Pope assumed that Jackson had withdrawn. He ordered more troops forward and the Confederates held firm, leaving the Union lines in disarray. The battle continued until around four in the afternoon when Longstreet ordered the consolidated attack. The impact of the artillery and fresh Confederate troops broke the Federal line and they retreated back toward Centerville (Hennessy 1993).

Following the defeated Federal force, Jackson attempted to complete the Confederate victory by cutting off the retreat. Jackson attacked two Federal divisions along the Little River Turnpike close to Chantilly Plantation and Ox Hill in Fairfax County. The hard-fought battle took place during a thunderstorm as the Confederates were stopped by the Federals at the cost of the lives of their two division commanders, Major General Philip Kearney and Major General Isaac Stevens. Pope continued his retreat to the safety of the Washington defenses, where McClellan assumed command. Meanwhile, Lee prepared to follow up his victory by marching north into Maryland (Civil War Sites Advisory Commission 1999c).
4.2.5.3 Bristoe Station

After the Battle of Gettysburg, Lee’s defeated army and the victorious Army of the Potomac under General George G. Meade returned to northern Virginia. Both armies had not only returned to the area but they fought several engagements in northern Virginia during what has been termed as the Bristoe Campaign. Lee’s army took up position behind the Rapidan River in Orange County. Meade’s army eventually followed and took up position across from the Confederates (Civil War Sites Advisory Commission 1999d). Early in September 1863, General Lee sent one of his corps commanders, General James Longstreet, and two divisions to reinforce General Braxton Bragg’s army operating in southeastern Tennessee and northern Georgia (MacDonald 1988). Meanwhile, Meade had sent two corps from the Army of the Potomac to the same theater. Lee believed that, although they were still at a numerical disadvantage, the time was ripe for the Army of Northern Virginia to once again undertake an offensive (Scheel 1985).

Once Lee’s attempted flanking movement was discovered, the Union army retreated northward along the Orange and Alexandria railroad in the direction of Bristoe Station, now referred to as Bristow, in Prince William County. Meade’s goal was to reach the Washington defenses and the safety that they offered. Stuart’s cavalry remained to the west of the Federal army and screened Lee’s wide-arc movement further west. Lee hoped to beat the Union army to Manassas and engage the retreating Union troops (Martin 2000).

Following an engagement involving elements of the two armies at Auburn on October 14, the Army of Northern Virginia moved into Prince William County, where on the same day the two armies would do battle at Bristoe Station. The Army of the Potomac was now no longer strung out on the march, but gathered at Bristoe Station. The Confederate infantry followed the Federals with A. P. Hill’s corps in the lead (Davis 1957). Hill’s troops spotted Federal troops crossing Broad Run (Figure 4-3). Eager to seize the opportunity of attacking Federal troops on the march, Hill sent in two brigades without prior reconnaissance. As the brigades approached Broad Run, the Federal Second Corps emerged from behind a railroad embankment and unleashed a devastating fire into the right flank of the two Confederate brigades (Martin 2000). Hill’s troops suffered heavy losses of 1,400 killed, wounded, or captured and the loss of five pieces of artillery (Davis 1957; Martin 2000). The repulse by Meade’s troops was decisive enough to prevent Lee from continuing offensive operations against the Federals. Lee held his ground and waited, hoping the Federals would attack, but Meade’s army remained on the opposite side of Broad Run. On October 17, Lee withdrew toward the Rappahannock, followed by Federal cavalry (Martin 2000).

4.2.6 Reconstruction and Growth (1865-1917)

More Civil War battles were fought in Virginia than any other state. The commonwealth suffered a heavy loss of manpower, a shattered economy, and devastated land. Soldiers returning from battle found their farms destroyed, in many cases needlessly. The state’s economy was in ruins, and it was mired in debt from canal, railroad, and turnpike construction during the antebellum era. One positive development of the period was legislation for a statewide system of public schools including African-American children (Peirce 1975).

Prince William County, like most of Virginia, was devastated by the Civil War, and reconstruction required considerable effort. Local governments had to be reconstructed; schools, churches,
Figure 4-3: Pvt. Maj. Geo. L. Gillespie's 1865 Map Showing the Locations of Warrenton, Madison Court House, Culpeper, Brandy Station, and the Orange and Alexandria Railroad. Map Also Shows Troop Movements of Maj. Gen. Philip H. Sheridan's Union Cavalry In 1864-1865.
homes, barns, and outbuildings had to be rebuilt; and food remained scarce. Many of the returning soldiers were disabled and could not help with the effort. The economy was very depressed, and many residents abandoned the effort to regain their old lives, moving west in order to start over completely. Much of the reconstruction of the county was done by newcomers who relocated to the area shortly after the war. The location of Manassas at the junction of two important railroads allowed the town to prosper and grow rapidly at a time when other towns in Virginia were still struggling with the aftereffects of war (Evans 1989).

Citizens of Prince William County began to petition to move the county seat from Brentsville to Manassas Junction shortly after the Civil War. Although Manassas Junction was conveniently located along the railway, citizens of Brentsville delayed the move until 1892 (Hagemann 1988). Manassas was granted its town charter in 1873 (Evans 1989).

In 1900, the population of Prince William County was approximately 11,000 people, no larger than it had been in 1790 (Evans 1989). Dairy farming continued to be a source of income for the citizens of the county at the turn of the century, and deposits of iron ore that had been rejected in earlier years were mined for their pyrite (Evans 1989; Ratcliffe 1978).

The Warrenton Turnpike, described as the worst road in Prince William County, passed just south of the current project area. It followed the route of present US 29, which bisects the Manassas National Battlefield Park. Formerly one of the finer roads, after the war and the coming of the railroads it had been neglected. It was “pounded and rutted and worn and gullied by the army trains--artillery, quartermaster and commissary--for four years” (Stuntz and Stuntz 1998:266).

4.2.7 World War I to World War II (1917-1945)

During the first several decades of the twentieth century, much of the region was still primarily rural. Although farming was the main occupation, the lumbering industry was also important to local economies. For example, the Lonas and Turner lumbering operation, which cut timber in the area known as “The Big Woods,” employed many residents of the area until the 1920s (Bowers 1990). The timbering site was located near Centreville.

During the Depression, agricultural prices dropped, and many residents of Prince William County were forced to find work to supplement their farm incomes. Some residents were employed digging ditches and building roads such as Route 55 through Haymarket. After the effects of the Depression had subsided, many residents of the area found work in the city of Washington, and the region became home to a large population of commuters (Bowers 1990).

4.2.8 The New Dominion (1945-Present)

By 1950, the population of Prince William County had grown to approximately 21,000 people. This represented a growth of nearly 100 percent over the population at the turn of the century. The proximity of the county to Washington, D.C., was largely responsible for this growth, as more and more people were employed by the federal government and other businesses in the city. The growth of suburbs in the county was facilitated by the construction of Interstate 95 in the 1950s (Evans 1989). Even in the 1950s, expansion of Washington’s suburbs was sufficient to prompt Prince William County to participate in the Northern Virginia Regional Planning
Commission, an organization established to help solve problems arising from the rapid expansion (Gottmann 1969). This growth and its attendant complications continue.
5.0 METHODS

5.1 INTRODUCTION

The purpose of the survey was to determine if resources in, or eligible for, the National Register of Historic Places (NRHP) are located within the project’s Area of Potential Effects (APE). The APE for the archaeological identification survey is three discontiguous areas within a corridor along Pageland Lane, to which CCR was denied access during a 2006 survey (Luchsinger et al. 2006). Additionally, a supplemental metal detector survey was conducted within a portion of the previously surveyed 500-ft corridor within the Manassas National Battlefield District boundaries. The APE for the metal detector survey extended one mile north from the northern end of the Dunklin Shift segment of the corridor (James et al. 2010) and extended 600-ft west of Pageland Lane.

5.2 BACKGROUND RESEARCH

The purpose of the background research was to identify any previously recorded archaeological sites in or adjacent to the project area, to obtain information on project-specific natural characteristics and cultural patterns, and to review the results of cultural resource investigations in the region. A majority of the background research for the area was compiled during previous projects CCR has conducted in the region. This research was conducted at the VDHR, the Virginia State Library and the Virginia Historical Society in Richmond, the Prince William County Clerk of Court Office and the Ruth E. Lloyd Information Center (RELIC) at the Bull Run Regional Library in Manassas, VA, the Hackney Library of Barton College in Wilson, NC, and the CCR library in Tarboro, NC.

For the current investigations, additional background research was conducted to update information on recent cultural resources surveys and sites identified in the area. The VDHR DSS was consulted to determine if any additional sites have been recorded in the project area since the last time background research was conducted. The office of the Prince William County archaeologist was contacted to determine if any new county-level surveys had been conducted. In addition, the National Park Service and the Bull Run Regional Library were consulted regarding any additional information concerning sites 44PW0593 and 44PW0594.

5.3 ARCHAEOLOGICAL FIELD METHODS

Areas that were low and wet, extremely sloped, or obviously disturbed were briefly examined but not intensively surveyed. Steeply sloped areas were judgmentally shovel tested in areas with the potential to contain sites of military activity, such as an area defined as a strategic military crest. There were no areas with adequate surface visibility for a pedestrian survey. Shovel tests were excavated no more than 75-ft (22.86-m) intervals.

Shovel tests were generally 38 cm (15 in) in diameter and were excavated at least 10 cm into the subsoil or sterile soil. Soil from the shovel tests was screened through 6.35-mm (0.25-inch) hardware cloth. The shovel test locations were noted on the project map, and profiles were measured and recorded along with general notes on the terrain. Digital photographs were used to document the general conditions of the project area.
For the metal detection component of the project, an ESRI ArcGIS MXD file showing the corridor location boundaries was obtained from VDOT and was used as the base data from which the 75-ft (22.76-m) interval transect lines (oriented approximately north-south) were created within the 68-acre APE. The original MXD file and transect shapefile were exported into a Trimble GeoXH GPS unit along with additional files to record location data in the field.

In the field, a GPS technician flagged the transect lines to be followed by the metal detector operator. The metal detector operator swept continuously along each transect line, sweeping a six-foot arc. (The metal detector sensitivity was set low enough to detect aluminum foil and Mylar.) When metal was detected, a nonmetallic pin flag was placed to mark the hit location. The excavation crew followed the metal detector operator and removed soil around each hit location and the soil was screened through 0.25-inch hardware mesh. Metal objects were either bagged by provenience or discarded in the field if the material was obviously modern (e.g., aluminum cans). Each hole was swept with the metal detector to ensure collection of the material. If no material was present in the screen, the backdirt was swept with the detector in an attempt to locate the metal. Each hit was located and recorded using the GPS.

An archaeological site was defined by the recovery of three artifacts in reasonable association. Discoveries consisting of fewer than three artifacts were reported as artifact locations. The approximate horizontal and vertical extent of any newly recorded site, as well as the internal configuration, was defined by the excavation of shovel tests placed at no more than 50-ft (15-m) intervals. Site boundaries were defined based on the location of positive shovel tests and/or the distribution of artifacts recovered from the surface. Artifacts recovered during site excavations were placed in bags labeled with the appropriate site provenience information. No shovel tests or metal detection occurred beyond the edge of the current APE, with the exception of the area near site 44PW0593. In this area, a limited amount of additional shovel tests were excavated and a section of the area was metal detected outside the APE in an attempt to confirm site boundaries.

Recorded archaeological resources were assessed against the NRHP criteria to determine their potential for eligibility. These criteria require that the quality of significance in American history, architecture, culture, and archaeology should be present in buildings, structures, objects, sites, or districts that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and that the buildings, structures, objects, sites, or districts:

A. are associated with events that have made a significant contribution to the broad patterns of our history;
B. are associated with the lives of persons significant in our past;
C. embody the distinctive characteristics of a type, period, or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
D. have yielded, or may be likely to yield, information important in prehistory or history (Federal Register 1981).

In general, archaeological sites that lack sub-plow zone artifact-bearing deposits, have low-density artifact distributions, contain evidence of deep plowing, lack spatial integrity, lack artifact
concentrations, or exhibit signs of earth-disturbing activities do not appear to be good candidates for inclusion in the NRHP. Sites that contain concentrations of artifacts, intact surface features, or intact subsurface remains may be recommended for additional evaluation to determine if they are eligible for inclusion in the NRHP.

5.4 LABORATORY METHODS

Upon completion of fieldwork, the recovered artifacts were processed and analyzed by CCR staff members. All artifacts recovered from sites and any diagnostic isolated finds were cleaned, labeled, and prepared for curation according to the standards and guidelines issued by VDHR. The artifacts will be submitted to the curation facility of VDHR or another appropriate depository selected by the client.

Analysis included classification and quantification of artifacts and other cultural materials. Lithic artifacts were defined in terms of raw material, morphology, and manufacturing stage. Fire-cracked rock and unmodified cobbles were noted if present, but generally not retained. Prehistoric ceramics, if recovered, were defined as to type and temporal placement using the appropriate typologies. Historic artifacts were analyzed using standard reference materials. There are no materials requiring stabilization or further treatment.

5.5 MAPPING DISCLAIMER

The mapped data contained within this report is to be used solely for locating the cultural resource component and should not be substituted for data provided by registered land surveyors or any licensed architect or engineer.
6.0 SURVEY RESULTS

6.1 INTRODUCTION

The current project included two tasks: metal detection within an area previously surveyed, and archaeological survey within three areas where access had been denied during previous projects (Figure 6-1; Luchsinger et al. 2006). The metal detection tract was subdivided, for convenience, into smaller units (labeled A-F in Figure 6-1) based on fence lines or other visible features. The three previously unsurveyed areas were labeled Areas 1-3 from north to south (see Figure 6-1). No new archaeological sites were recorded as part of the current survey. However, the metal detection survey resulted in the recording of 12 isolated artifact locations and eleven artifacts associated with site 44PW0594.

As noted in the Previous Archaeology section, four previously recorded archaeological sites were shown on DSS to be located in or directly adjacent to the APE; evidence for three of the sites is present within the current project area. Seven to eight metal detecting transects at 75 foot intervals paralleling the long axis of the APE (generally north-south) were performed using two metal detectors with similar detection capabilities. A total of 72 positive “hits” were recorded. Of these, 24 hits were collected for further analysis. Three items were discarded in the laboratory, subsequent to analysis (see Figure 6-1, Table 6-1, and Appendix A).

As part of the archaeological survey, 159 shovel tests were excavated at 75 foot intervals. Additional shovel testing was performed in and around sites 44PW0593 and 44PW0594 to help determine site boundaries. The stratigraphy throughout the three project areas and sites 44PW0593 and 44PW0594 was consistent and was generally composed of a thin brown silty clay layer above a reddish yellow or brownish yellow channery subsoil (Appendix B).

6.2 SITE 44PW0580

Site 44PW0580 has been previously recorded as a section of the unfinished “Independent Line” of the Manassas Gap railroad (Boyd 1994); colloquially, the site is known as the Unfinished Railroad. The Independent Line was chartered in 1853 to be built between Manassas Gap and Harrisonburg to facilitate wheat trade. Work on the line was halted following a significant drop in wheat prices in 1856 and subsequently by the onset of the Civil War in 1861 (Boyd 1994).

The boundaries for site 44PW0580 conform to that section of the Unfinished Railroad within the current APE. However, the site boundaries are incorrectly mapped on the VDHR DSS GIS, which shows the site approximately 600 linear feet shorter than its actual size, and approximately 260 feet south of its actual location. Figure 6-2 shows the adjusted boundaries for site 44PW0580 within the current APE. In 1991, VDHR listed site 44PW0580 as eligible for the NRHP under Criteria A and D “based on [the] site representing well-preserved though rare transportation feature [sic].”

Several archaeological survey projects have been conducted at the site, including a Phase II archaeological study and a Phase III documentation (Boyd 1994). Excavations and trenching across the feature have not recovered cultural materials relating specifically to the railroad or Civil War activity. However, the projects did record a stratigraphy indicating that the railroad bed was likely built of local materials taken from ditches along the railroad R-O-W and from areas to the east of Pageland Lane (Boyd 1994:42). Subsequent to its construction, the height of the railroad
Figure 6-1: Location of the Positive Metal Detection Hits Recovered and Retained as Shown on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle.
Figure 6-2: Location of Previously Recorded Sites as Shown on the VDHR DSS and the Actual Location of Site 44PW0580 on the USGS 7.5-Minute Gainesville, Virginia, Topographic Quadrangle.
Table 6-1. Materials Recovered From Metal Detection Survey.

<table>
<thead>
<tr>
<th>Site/Isolate #</th>
<th>Line/Artifact</th>
<th>Description</th>
<th>Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Section A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/1</td>
<td>Rebar</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>5/1</td>
<td>Aluminum can</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>6/1</td>
<td>Wire</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/1</td>
<td>Plow fragment</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>Bucket fragment</td>
<td>No</td>
</tr>
<tr>
<td>44PW0594</td>
<td>1/3</td>
<td>Indeterminate wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td>Wire</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1/5</td>
<td>Bolt</td>
<td>No</td>
</tr>
<tr>
<td>IF0132-1.1</td>
<td>1/6</td>
<td>Indeterminate object, possible machinery part</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>2/1</td>
<td>Drive fastener</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2/2</td>
<td>Barbed wire fragment</td>
<td>No</td>
</tr>
<tr>
<td>44PW0594</td>
<td>2/3</td>
<td>Indeterminate wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td>44PW0594</td>
<td>2/4</td>
<td>Cut nail, unidentified tube fragment</td>
<td>Yes</td>
</tr>
<tr>
<td>44PW0594</td>
<td>3/1</td>
<td>Indeterminate wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td>44PW0594</td>
<td>3/2</td>
<td>Indeterminate wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td>44PW0594</td>
<td>3/3</td>
<td>Indeterminate wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td>44PW0594</td>
<td>3/4</td>
<td>Cut lathe nail</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>3/5</td>
<td>Metal fence post</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>4/1</td>
<td>Fence staple</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>4/2</td>
<td>No artifact recovered</td>
<td>No</td>
</tr>
<tr>
<td>44PW0594</td>
<td>4/3</td>
<td>Indeterminate wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td>44PW0594</td>
<td>4/4</td>
<td>Indeterminate wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td>44PW0594</td>
<td>4/5</td>
<td>Hinge fragment</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/1</td>
<td>Wire</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>Tarp grommet</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2/1</td>
<td>Stake</td>
<td>No</td>
</tr>
<tr>
<td>IF0132-2.1</td>
<td>5/1</td>
<td>Horse bridle bit fragment</td>
<td>Yes</td>
</tr>
<tr>
<td>IF0132-3.1</td>
<td>5/2</td>
<td>Possible cannonball fragment</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>6/1</td>
<td>Bolt</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>7/1</td>
<td>Unidentified metal, possible rebar</td>
<td>Discarded in lab</td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>Unidentified metal</td>
<td>Discarded in lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/1</td>
<td>Aluminum can</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2/1</td>
<td>Wire nail</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2/2</td>
<td>Wire</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>Wire nail</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>6/1</td>
<td>No artifact recovered</td>
<td>No</td>
</tr>
<tr>
<td>IF0132-4.1</td>
<td>6/2</td>
<td>Horseshoe</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>6/3</td>
<td>Wire fragment</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/1</td>
<td>Modern chain fragment</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>Wire nail</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>Wire nail</td>
<td>No</td>
</tr>
<tr>
<td>IF0132-5.1</td>
<td>1/4</td>
<td>Possible tractor component</td>
<td>Yes</td>
</tr>
<tr>
<td>Site/Isolate #</td>
<td>Line/Artifact</td>
<td>Description</td>
<td>Collected</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IF0132-6.1</td>
<td>3/1</td>
<td>Horse bridle component?</td>
<td>Yes</td>
</tr>
<tr>
<td>IF0132-7.1</td>
<td>4/1</td>
<td>Machinery fragment</td>
<td>Yes</td>
</tr>
<tr>
<td>IF0132-8.1</td>
<td>5/1</td>
<td>Pipe fitting, interior threaded</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>Wire fragment</td>
<td>No</td>
</tr>
<tr>
<td>IF0132-9.1</td>
<td>6/1</td>
<td>Modern spring</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>6/2</td>
<td>Hinge</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Section F

<table>
<thead>
<tr>
<th>Site/Isolate #</th>
<th>Line/Artifact</th>
<th>Description</th>
<th>Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF0132-10.1</td>
<td>4/1</td>
<td>Horseshoe</td>
<td>Yes</td>
</tr>
<tr>
<td>IF0132-11.1</td>
<td>4/2</td>
<td>Curved plate</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>5/1</td>
<td>Modern clip</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>Iron rod fragment, rebar</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>6/1</td>
<td>Wire</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>6/2</td>
<td>Wire nail</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>6/3</td>
<td>Bottle cap</td>
<td>No</td>
</tr>
<tr>
<td>IF0132-12.1</td>
<td>7/1</td>
<td>Wrought or cut nail</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>Wire nail</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>7/3</td>
<td>Modern bolt</td>
<td>No</td>
</tr>
</tbody>
</table>

Section G

<table>
<thead>
<tr>
<th>Site/Isolate #</th>
<th>Line/Artifact</th>
<th>Description</th>
<th>Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2/1</td>
<td>Wire fragment</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>3/1</td>
<td>Pipe fragment</td>
<td>No</td>
</tr>
</tbody>
</table>
bed has been reduced from its original 2.5-to 4.0-foot elevation above grade to nearly level (Figure 6-3). The reduction of the railroad bed is likely the result of plowing and cultivation.

During the current project, site 44PW0580 was subjected to both metal detection and shovel testing because it is located within the project area for both tasks. No cultural materials or features were recorded that alter any of the previous descriptions for the site. It is recommended that site 44PW0580, which represents a badly eroded portion of the Unfinished Railroad (Boyd 1994:47), is no longer eligible for the NRHP under Criterion D since its potential to yield data has been realized through multiple archaeological and archival projects. Within the current APE, the remnant of site 44PW0580 no longer contributes to the significance of the Unfinished Railroad as a well-preserved transportation feature.

6.3 SITE 44PW0593

Site 44PW0593 has been previously recorded as a “mass burial” for unknown soldiers during the Civil War’s Second Battle of Manassas (Ryder et al. 1992:16). In 1992, the landowner noted that “…the unidentifiable bodies from the Second Battle of Manassas were collected and brought along the abandoned railroad bed…to be buried in the mass grave…” (Ryder 1992:16). This statement is consistent with War-era documents and images (Figure 6-4) noting the presence of bodies in fields adjacent to Warrenton Pike (Highway 29) and near Brawner’s Farm (east of the APE) for months after the battle:

Rumors have reached me...that the remains of those men of the “Iron Brigade,” and of the Fifty-sixth Pennsylvania and Seventy-sixth New York volunteers, who fell at Gainesville in the bloody fight of August 28th, 1862, were carelessly buried. Upon examination...while passing the battlefield on our way to Thoroughfare Gap, it was found to be true….I write to assure...that all has been done that could be to give them decent burial (Lysander Cutler, Wisconsin State Journal, November 7, 1863).

Despite the informant information and local history that a burial ground is present on the Pageland property, and the likelihood that the mass burial of unidentifiable bodies occurred, the physical location has not been confirmed archaeologically. Boyd (1994:40) locates site 44PW0594 approximately 400 yards (1,200 feet) west of Pageland Lane, while Ryder et al. (1992:16) reports the location as 590 feet west of Pageland Lane at “…the eastern point of a grove of trees.” The grove of trees is a tongue of forested land containing the Unfinished Railroad berm (site 44PW0580) that extends west into the Conway-Robinson State Forest. East of the trees (within the APE), the berm has been significantly reduced due to plowing and erosion.

The VDHR DSS site form and GIS layer locates site 44PW0593 as described in Ryder et al. (1992:16) but with a larger surface area than reported. Ryder et al. (1992:16) notes that the site consists of a shallow (0.5 feet) depression measuring 30 feet in diameter, while the VDHR GIS shows the site size as approximately 150 feet by 220 feet. However, at the time of the Ryder et al. (1992) survey, the depression was filled with water and not shovel tested.
Figure 6-3. Site 44PW0580. View to East. Note: individual is standing on low, barely visible, remnant of railroad bed.
Figure 6-4. “Officers and Soldiers on the Battlefield of the Second Bull Run, Recognizing the Remains of Their Comrades” by Edwin Forbes (1863; Library of Congress USZ62-19339). Note: the view is looking north towards Stony Ridge. “The Dump,” a portion of the “Unfinished Railroad” approximately 1.5 miles east of Site 44PW0593, is shown in the right-central portion of the sketch.
An examination of historic aerial photography shows the location of a 30-foot diameter feature in the approximate area of site 44PW0593, as described in Ryder et al. (1992). Imagery from 1994 (Figure 6-5), 1998, 2000, 2002, 2003, 2004, 2006, and 2008 (http://www.pwcgov.org) shows a 30-foot diameter soil anomaly (dark stain) approximately 700 feet west of Pageland Lane and 75 feet north of the Unfinished Railroad berm. Whether the feature contains cultural material is unknown; however, the symmetrical shape and clear boundaries of the anomaly may be indicative of a built feature, and its persistence over time may suggest a substantial subsurface deposit.

During the current project, metal detection was performed along 75-foot intervals within the current APE (Figures 6-6 and 6-7). In addition, a supplemental transect was metal detected 50 foot west of the eastern APE boundary to insure coverage within the site area as depicted on the VDHR GIS and described in Ryder et al. (1992). One positive hit was recorded near the site; however, the recovered artifact was a corroded rebar fragment that was discarded.

In addition to the metal detecting effort, shovel testing was conducted within the mapped site 44PW0593 area within the current APE. The shovel testing effort was combined with the shovel testing program for one area not addressed during the original archaeological survey due to lack of access (Area 3, see Figure 6-1; see Luchsinger et al. 2006). Shovel testing was conducted at 75-foot intervals within the APE. A supplemental line of shovel tests at 75-foot intervals was excavated 50 feet west of the western APE boundary to insure coverage within the site area as depicted on the VDHR DSS GIS and described in Ryder et al. (1992). No cultural materials were recorded within the mapped site 44PW0593 area within or adjacent to the current APE or within the previously unsurveyed area during the shovel testing.

There is no direct archaeological evidence confirming that the site area defined as 44PW0593 contains human interments, associated grave goods, or related artifacts within the current APE. It is recommended that the VDHR site boundaries for site 44PW0593 be adjusted to reflect the lack of site evidence within the current APE.

6.4 SITE 44PW0594

Ryder et al. (1992:16), based on landowner testimony, recorded site 44PW0594 as a pit latrine used by army personnel during 1916 maneuvers. Based on archival research, there were no large-scale maneuvers in the area during 1916. However, large-scale events were undertaken in 1904 and 1939 (O’Donnell 1986). Based on historic aerial photography (http://www.pwcgov.org) from 1937 that shows the pit feature, it is likely that if site 44PW0594 was associated with army maneuvers, then it was likely associated with the 1904 events held at the Manassas Battlefield.

The 1904 army maneuver at Manassas Battlefield was a joint exercise that included the U.S. Army as well as National Guard units from various states. Included in these exercises were troops from the National Guard of Maine. Newcomb (1904:204) provides a description of Maine’s troop movements that place the unit within the APE during the afternoon of September 7, 1904:

1:30 P.M., the 2nd Battalion, having on its left two (2) companies of the 1st Battalion, 2nd Maine, and on its right Company K, U.S. Engineers and the North Carolina Regiment, emerged from the woods on a line parallel with the line...
Figure 6-5: Site 44PW0593 as Shown on the VDHR DSS with 30-foot Diameter Soil Anomaly to the West of the APE.
Figure 6-6. Shovel Testing in the Vicinity of Site 44PW0593. View to Northwest.

Figure 6-7. Metal Detecting in the Vicinity of Site 44PW0593. View to North.
marked by the Gossom and Marsteller houses and drove a force of Blues, about
one battalion, from a position they had held along the railroad embankment. This
Blue battalion retreated under a heavy infantry fire up the slope to Pageland lane,
where they found shelter in the ditch behind the fence on west side of said
lane…At 3.00 P.M., the action terminated…The regiment bivouacked with the
brigade near the Piercy house.

It should be noted that the exercises were mock battles and that troops were not actually fired
upon; it is unclear whether blank rounds were used during the maneuvers. Troop losses during
the exercises were determined by referees traveling with each unit.

The APE is situated between the Gossom-Marsteller line and Pageland Lane, as described by
Newcomb (1904). In addition, the bivouac location (temporary encampment) near the Piercy
house is located to the west of the Marsteller house and well outside the APE.

During the current project, systematic shovel testing was conducted around the pit feature and
judgmental shovel tests were conducted within the depression (Figure 6-8, 6-9, and 6-10).
Furthermore, the area was included in the metal detector survey. The pit dimensions are
approximately 70 feet by 25 feet and approximately four feet deep; the long axis is oriented at
approximately 20 degrees. The interior of the depression has been significantly altered by fill
events and rodent burrows, however some areas along the depression boundary do retain
evidence of cutting and facing. There is no surface or subsurface evidence of soils indicative of
long-term latrine activity, which typically would include dark loams with a high organic content.
The soils within the depression are similar to those recorded in subsoil outside the feature. The
only artifacts recovered from the depression were fragments of barbed wire. However, bails of
wire and other modern trash have been deposited in the feature.

As part of the metal detection survey, 11 artifacts were recovered in a cluster to the north of the
site 44PW0594 pit feature. The artifacts include nine wrought or cut nail fragments of
indeterminate age (wrought nails were common throughout the seventeenth, eighteenth, and
nineteenth centuries, while cut nails have been used since the late eighteenth century; Nelson
1968), one hinge, and one indeterminate metal fragment suggesting that a possible structure was
located nearby. These artifacts are included as part of the site and the boundary has been
adjusted as shown in Figure 6-8. However, based on the lack of overall cultural material or soil
evidence, the lack of datable material from the pit feature, and the broad chronological range
associated with wrought or cut nails, it is difficult to assign a function to the site. If the site were
related to the 1904 maneuvers, it is possible that the pit was dug as a defensive position for the
exercises conducted on September 7th and the metal artifacts relate to other activities in the
vicinity. It is also possible the pit was excavated in support of farming activities unrelated to
military maneuvers. Regardless of its function, site 44PW0594 appears to lack sufficient above-
ground or subsurface integrity to recommend it for eligibility in the NRHP.

6.5 SITE 44PW0595

Site 44PW0595 has been previously recorded as a remnant of the nineteenth-century Centerville
Road. Within the current study area, the site has been incorporated into a driveway and appears
to have been graded or maintained to keep it passable. While no shovel tests were excavated
directly in the road, shovel testing was conducted along the road corridor as part of testing in
Area 2. No cultural material was recovered from shovel testing adjacent to the site. Within the
Figure 6-8. Site 44PW0594, Plan View.
Figure 6-9. Site 44PW0594. View to West.

Figure 6-10. Interior of Site 44PW0594 Showing Push Piles and Disturbance. View to North.
current APE, site 44PW0595 appears to have been modified over time and does not appear to contribute to any significance associated with the site outside the APE.

6.6 ISOLATED ARTIFACT FINDS

Twelve isolated artifacts were recorded during the metal detection survey, none of which cluster in a meaningful way. Of these, one artifact (IF0132-3.1; see Appendix A) is a possible artillery fragment, two (IF0132-4.1 and IF0132-10.1) are horseshoes, two are possible fragments of a horse bridle bit (IF0132-2.1 and IF0132-6.1), and the remaining artifacts are likely associated with farming equipment and activities. Appendix A describes the isolated artifacts.

The possible artillery fragment (approximately 2.5 inches in length and 5/8 inches thick) comes from either a spherical or conical object with a concave interior. Based on the curvature, the original object was approximately 4.5 inches in diameter, placing it within the range of a number of Civil War-era artillery shells (including cannonballs) used by Federal and Confederate troops (Melton and Pawl 1996). However, there are no diagnostic chronological or functional attributes associated with this artifact.

The bridle bit fragments include a bit ring (IF0132-6.1) with a portion of the shank, as well as a shank fragment (IF0132-2.1). Neither artifact includes diagnostic chronological attributes. Horseshoe IF0132-4.1 is approximately 6-inches wide by 5.5-inches long and is heavily corroded iron with no diagnostic chronological attributes. Horseshoe IF0132-10.1 is approximately 4.5-inches wide by 4.5-inches wide with two protruding treads, and is made of either an aluminum or copper alloy; there are no diagnostic chronological attributes.

6.7 SUMMARY

Three previously unsurveyed portions of the Tri-County Location Study corridor north of Highway 29 were surveyed. In addition, an approximately one-mile portion of the corridor adjacent to the Manassas National Battlefield and within the VDHR boundaries of the Manassas Battlefield Historic District (VDHR # 076-0271) was surveyed using metal detectors. Four previously recorded archaeological sites had been mapped within or adjacent to the APE (44PW0580, 44PW0593, 44PW0594, 44PW0595). While sites 44PW0580, 44PW0594, and 44PW0595 were relocated during the current survey, site 44PW0593, appears to be outside the APE. Site 44PW0580, listed as eligible for the NRHP under Criteria C and D, is recommended as no longer eligible under Criterion D, while site 44PW0594 is recommended as not eligible for inclusion in the NRHP; the portion of site 44PW0595 within the APE does not appear to contribute to the significance of the site.

Twelve isolated artifact locations were recorded during the metal detection survey as well as 11 artifacts associated with site 44PW0594. One positive shovel test (barbed wire fragments) was recorded within site 44PW0594.
7.0 REFERENCES CITED

Alvord, C., and L. Bidgood
1912 The First Explorations of the Trans-Allegheny Region by the Virginians, 1650-1674. Arthur Clark Company, Cleveland, Ohio.

Anderson, David G., David S. Brose, Dena F. Dincauze, Michael J. Shott, Robert S. Grumet, and Richard C. Waldbauer

Anderson, David G., and Michael K. Faught

Anderson, David G., and Kenneth E. Sassaman

Bamann, Susan, Loretta Lautzenheiser, Maral Kalbian, and Bill W. Hall

Barber, Michael B., and Eugene B. Barfield

Bowers, Deborah

Boyd, C. Clifford, Jr.

Boyd, Luke H.

Braun, E. Lucy

Brown, George B.
Tri-County Location Study

Bushey, Mary Ellen
1993 Phase II Architectural and Historical Evaluations of Selected Properties Associated with the Proposed Improvements to Route 234, the Manassas Bypass, in Manassas and Prince William County, Virginia. Manuscript on file, Virginia Department of Historic Resources, Richmond.

Bushey, Mary Ellen, R. Taft Kiser, and Robin L. Ryder

Bushnell, David Ives., Jr.
1937 Indian Sites Below the Falls of the Rappahannock, Virginia. Smithsonian Miscellaneous Collection 96 (4). Smithsonian Institution, Washington, D.C.

Carr, Kurt C.

Civil War Sites Advisory Commission

Claggett, Stephen R., and John S. Cable, assemblers

Clark, Annye B., and Catherine S. Arrington
1933 History of Prince William County. Prince William County School Board, Prince William County, Virginia.

Clem, M.
2004 Phase II Archaeological Investigation of the Dean/Burton Parcel, Loudoun County, Virginia. Ms. on file, KCI Technologies, Inc.

Coe, Joffre L.

Custer, Jay F.
Cutler, Lysander

Davis, Burke

Davis, W. C.

Delcourt, Hazel, and Paul Delcourt

Egloff, Keith, and Joseph M. McAvoy

Elder, John H., Jr.

Evans, D’Anne

Federal Register

Fenneman, Nevin

Fisher, Herbert G.

Gardner, William M.

Goebel, Ted, Michael E. Waters, and Dennis H. O'Rourke

Goodyear, Albert. C., III

Gottmann, Jean

Griffin, James B.

Gropman, Elizabeth

Hagemann, James

Hantman, Jeffrey, and Michael Klein

Head, James William

Hennessy, John

Hodges, Mary Ellen N.
James, Tiffany, Loretta Lautzenheiser, Bill Hall, and Dennis Gosser

Jefferson, Thomas

Jirikowic, C.

Johnson, Michael F.

Justice, Noel D.

Klein, Michael and Thomas Klatka

Luchsinger, Heidi, Loretta Lautzenheiser, and Bill Hall

McAvoy, Joseph M., and Lynn D. McAvoy

McCary, Ben C.

McDonald, Jerry N. (1998 Reference in text as MacDonald – with an A)

McLearen, Douglas C.

Marsh, Helen Hearst

Martin, Samuel J.

Melton, Jack W., and Lawrence E. Pawl

Meltzer, David J.
1989 Why Don’t We Know When the First People Came to North America? American Antiquity 54(3):471-490.

Moore, L. E.

Mouer, Daniel L.

Nelson, Lee H.
1968 Nail Chronology as an Aid to Dating Old Buildings. In the American Association for State and Local History, Technical Leaflet 48, History News 24(1).

Newcomb, Everard E.

O’Donnell, Mike

Pawlett, Nathaniel

Peirce, Neal

Prince William County (www.pwcgov.org [website])
Prince William County Historical Commission

Ratcliffe, R. Jackson
1978 This Was Prince William. Potomac Press, Leesburg, Virginia.

Robertson, William Glen

Ryder, Robin L., Mary Ellen Bushey, and F.T. Barker

Salmon, J. (compiler)

Scheel, Eugene

Schlotterbeck, John T.

Steadman, Melvin L., Jr.
1964 Falls Church by Fence and Fireside. Falls Church Public Library, Falls Church, Virginia.

Stevens, J. Sanderson

Stuntz, Connie P., and Mayo S. Stuntz
Sweig, Donald

Thornbury, William D.

Turner, E. Randolph, III

United States Department of Agriculture, Soil Conservation Service

Virginia Department of Historic Resources (VDHR)

Wagner, Daniel P., and Joseph M. McAvoy

Walker, Joan M.

Waltemyer, Todd

Watts, W. A.
1983 Vegetational History of the Eastern United States 25,000 to 10,000 Years Ago. In Late Quaternary Environments of the United States, Volume I: The Late Pleistocene edited by H.E. Wright, pp. 294-310. University of Minnesota Press, Minneapolis.

Wilkes, G.P.

Williams, Harrison

Wilshin, Francis F.
APPENDIX A
APPENDIX A
ARTIFACTS RECOVERED FROM THE SURVEY

Site 44PW0594

Shovel Test Judgmental 1, Zone 1
12 Barbed wire fence fragments, iron, corroded

Area B, Line 1, Hit 3
1 Indeterminate nail fragment, wrought or cut with handmade head, iron, corroded

Area B, Line 2, Hit 3
1 Indeterminate nail fragment, wrought or cut with handmade head, iron, corroded

Area B, Line 2, Hit 4
1 Cut nail, iron, 2.5” length, corroded
1 Indeterminate tube-shaped fragment, iron, corroded

Area B, Line 3, Hit 1
1 Indeterminate nail fragment, wrought or cut with handmade head, iron, corroded

Area B, Line 3, Hit 2
1 Indeterminate nail fragment, wrought or cut with handmade head, iron, corroded

Area B, Line 3, Hit 3
1 Indeterminate nail, wrought or cut with handmade head, iron, 2.25” length, corroded

Area B, Line 3, Hit 4
1 Cut lath nail with handmade head, iron, 1” length, corroded

Area B, Line 4, Hit 3
1 Indeterminate nail, wrought or cut with handmade head, iron, 1.75” length, corroded

Area B, Line 4, Hit 4
1 Indeterminate nail fragment, wrought or cut, clinched, iron, corroded

Area B, Line 4, Hit 5
1 Hinge fragment, iron, corroded, indeterminate nail with handmade head corroded in hole

IF0132-1.1
Area B, Line 1, Hit 6
1 Indeterminate object, iron, circular shaped, 3” wide and 1.5” thick, rimmed on one side and concave on the other, possibly part of agricultural machinery/equipment
IF0132-2.1
Area C, Line 5, Hit 1
1 Horse bridle bit fragment, iron, corroded, indeterminate age

IF0132-3.1
Area C, Line 5, Hit 2
1 Indeterminate fragment, iron, possible artillery fragment, 2.5 inches long, 5/8" thickness, approximately 4.5" diameter (original object), corroded

IF0132-4.1
Area D, Line 6, Hit 2
1 Horseshoe, iron, corroded, indeterminate age

IF0132-5.1
Area E, Line 1, Hit 4
1 Indeterminate object, iron, possible cap from agricultural machinery/equipment, painted blue, corroded

IF0132-6.1
Area E, Line 3, Hit 1
1 Indeterminate object, iron, ring with metal bar across middle, possible horse bridle bit fragment, corroded, indeterminate age

IF0132-7.1
Area E, Line 4, Hit 1
1 End cap with metal eye, iron, possibly from agricultural equipment/machinery, corroded

IF0132-8.1
Area E, Line 5, Hit 1
1 Pipe fitting, iron, 1.5" diameter, threaded on interior, corroded

IF0132-9.1
Area E, Line 6, Hit 2
1 Strap hinge fragments, iron, pintel attached to hinge, corroded

IF0132-10.1
Area F, Line 4, Hit 1
1 Horseshoe, aluminum or copper alloy, possibly decorative and not functional, corroded, indeterminate age

IF0132-11.1
Area F, Line 4, Hit 2
1 Curved plate with large pin in hole, iron?, possibly from agricultural equipment/machinery, corroded

IF0132-12.1
Area F, Line 7, Hit 1
1 Indeterminate nail, wrought or cut with handmade head, iron, 2.25" length, corroded
APPENDIX B

SELECTED SHOVEL TEST PROFILES